vaneless diffusers
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
О.А. Solovyeva ◽  
А.А. Drozdov ◽  
E.Yu. Popova ◽  
K.V. Soldatova

The centrifugal compressor design involves the use of approximate engineering techniques based on mathematical modeling. One of such techniques is the universal modeling method, which proves to be practically applicable. Having generalized a series of CFD calculations, we used a mathematical model in the latest version of the compressor model to calculate flow parameters in vaneless diffusers. The diffuser model was identified based on the results of experimental studies of average-flow model stages carried out at SPbPU. The model is also used to calculate Clark low-flow centrifugal compressor stages with narrow diffusers with a relative width in the range of 0.5--2.0 %. For these stages, the developed mathematical model showed insufficient efficiency, since the dimensions of the diffusers go beyond the limits of its applicability. To solve this problem, we calculated a series of vaneless diffusers with a relative width in the range of 0.6--1.2 % in the ANSYS CFX software package. Relying on the results of CFD calculations, we plotted the gas dynamic characteristics of the loss coefficients and changes in the flow angle depending on the flow angle at the inlet to the vaneless diffuser. To process the calculated data, the method of regression analysis was applied, with the help of which a system of algebraic equations was developed that connects geometric, gas-dynamic parameters and similarity criteria. The obtained equations are included in a new mathematical model of the universal modeling method for calculating the flow parameters of vaneless diffusers. Comparison of the calculated gas-dynamic characteristics according to the new model with experimental data showed the average error of modeling the calculated (maximum) efficiency equal to 1.08 %


Author(s):  
O.A. Solovyeva ◽  
K.V. Soldatova ◽  
Y.B. Galerkin ◽  
A.F. Rekstin

Vaneless diffusers of industrial centrifugal compressors most often consist of a tapered inlet section and a parallel-walled main section. The study proposes to choose such a width of the main section, at which the flow in the diffuser remains unseparated at the surge limit. To implement the primary design method, an empirical formula was obtained to determine the minimum continuous flow angle depending on the relative width of the diffuser. The primary design of eighteen stages was completed, covering a practically important range of parameters. The corresponding gas-dynamic characteristics were calculated by the universal modeling method, the dimensions and angles of the flow were analyzed. The proposed primary design method is integrated into the universal modeling method and is used in design practice.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1251
Author(s):  
Qian Zhang ◽  
Liang Zhang ◽  
Qiuhong Huo ◽  
Lei Zhang

Two types of stall patterns in the centrifugal compressor with a wide vaneless diffuser were numerically studied in this paper. We carried out kinds of three-dimensional numerical simulations of the instability process in wide vaneless diffusers with different radius ratios. The results show that there are two kinds of stall patterns in wide vaneless diffusers with different radius ratios. For a short diffuser with a radius ratio of 1.5, the speed of the propagation of stalled cells is relatively high, and the propagation speed and frequency of stall cells do not change with the decrease in the flow rate. For a long diffuser with a radius ratio of 1.8, the propagation velocity of stall cells is smaller to the one in the short diffuser, and increases with the decrease in flow rate. For wide vaneless diffusers with different radius ratios, the main factor causing stall is the outlet reflux. Reducing the radius ratio of the wide vaneless diffuser has an important influence on the stability of the centrifugal compressor.


Author(s):  
Y.B. Galerkin ◽  
A.G. Nikiforov ◽  
O.A. Solovyeva ◽  
E.Y. Popova

To calculate flow parameters of a vaneless diffuser of the centrifugal compressor stage, it is sufficient to determine the loss coefficient and the flow direction at the outlet. The paper presents the results of modeling the characteristics of these two parameters using neural networks and CFD methods. To obtain mathematical models, ANSYS calculation data was used for vaneless diffusers with a relative width of 0.014–0.1, relative outlet diameter of 1.4–2.0, inlet flow angle of 10–90° and velocity coefficient of 0.39–0.82, with the Reynolds number being in the range of 87 500–1 030 000. A comparison with the theory showed the regularity of gas-dynamic characteristics, and comparison with well-known experiments showed the correspondence of the flow structure. In order to improve the accuracy of simulation using neural networks, various recommendations on the preparation and processing of the initial data were collected and tested: identification of conflict examples and outliers, data normalization, improving the quality of the neural network training under the insufficient amount of sampling, etc. The application of the aforementioned recommendations significantly improved the accuracy of simulation. A simulation experiment based on neural models for studying the influence of dimensions, diffuser shape and similarity criteria on the diffuser gas dynamic characteristics made it possible to verify physical adequacy of the mathematical models, obtain new data on energy conversion processes and produce a set of recommendations on the optimal design of vaneless diffusers.


2020 ◽  
Vol 178 ◽  
pp. 01014
Author(s):  
Olga Solovyeva ◽  
Aleksandr Drozdov

The approximate engineering techniques based on mathematical modelling are used in centrifugal compressor design. One of such methods is the well-proven Universal Modelling Method, developed in the scientific and research laboratory “Gas dynamics of turbo machines”, SPbPU. In the modern version of the compressor model, vaneless diffusers mathematical model was applied based on a generalization of the CFD calculations. The mathematical model can be used for vaneless diffusers with a relative width in the range of 1.4 – 10.0%, with a radial length up to 2.0, in the range of inlet flow angles 10 to 90 degrees, the inlet velocity coefficient in the range of 0.39 – 0.82, Reynolds number varying from 87 500 to 1 030 000. The model was also used for calculating low-flow-rate model stages with narrow diffusers with diffusers’ relative width in the range of 0.5 – 2.0%. The mathematical model showed lesser accuracy. To widen the model applicability, new series of CFD-calculations were executed. A series of vaneless diffusers was designed with relative width in the range of 0.6 – 1.2%, The gas-dynamic characteristics of loss coefficients and outlet flow angle versus inlet flow angle of diffuser were calculated. Regression analysis was used to process the calculated data. System of algebraic equations linking geometric, gas-dynamic parameters and similarity criteria was developed. The obtained equations are included in a new mathematical model of the Universal Modelling Method.


2020 ◽  
Vol 178 ◽  
pp. 01028 ◽  
Author(s):  
Yuri Galerkin ◽  
Aleksey Rekstin ◽  
Aleksandr Drozdov ◽  
Kristina Soldatova ◽  
Olga Solovyeva ◽  
...  

We present the modern stage of development of Universal Modeling Method, a complex of mathematical models and software for optimal design of centrifugal compressors - a new version of simplified mathematical model of efficiency and new software for variation calculations of multistage compressors. Based on this numerical calculation complex we have created a method for preliminary design of flow paths of stages - 2D and 3D impellers, vane and vaneless diffusers and return channels. The new, 9th version of its mathematical model features a quasi-3D calculation method of 2D and 3D impellers design, a new principle of pressure characteristic calculation, a new model of vaneless diffusers and much more. “Digital twin of a centrifugal compressor stage” and “3D compressor” software create digital descriptions of the flow part and its solid model (“digital twin”).


2020 ◽  
Vol 96 ◽  
pp. 105546 ◽  
Author(s):  
Chenxing Hu ◽  
Ce Yang ◽  
Xin Shi ◽  
Runnan Zou ◽  
Lin Liu ◽  
...  

2019 ◽  
pp. 4-9
Author(s):  
Микола Васильович Калінкевич ◽  
Микола Іванович Радченко

Centrifugal compressors often operate at different capacities, so it is important to ensure their stable operation over a wide flow range. Stages with vaneless diffusers have several advantages compared to stages with other types of diffusers: they are more technologically advanced to manufacture, and more uniform pressure distribution behind the impeller improves the dynamics of the rotor. At low flows, due to the occurrence of a rotating stall and surge, the efficiency of stages with vaneless diffusers rapidly decreases. The occurrence of unstable operating modes of centrifugal compressor stages at low flow rates is associated with the appearance of developed backflows in the flow part. To expand the range of stable operation of the stages, it is necessary to use methods of flow separation control. Separation of the flow can be controlled either by special profiling the flow part channels or by actively influencing the flow, for example, by injecting gas. To solve this problem, a mathematical model of the gas flow in a vaneless diffuser with gas injection is developed. The characteristics and parameters of the flow in the vaneless diffusers with various meridional profiles with and without injecting gas were calculated. A comparison of the calculated and experimental characteristics of the vaneless diffusers and flow parameters in diffusers with different geometries and with different injection modes confirms the adequacy of the mathematical model. Investigations have confirmed the possibility of improving the characteristics of the stages of centrifugal compressors through the use of vaneless diffusers and diffusers with gas injection. Gas injection diffusers extend the stable operation range of the stages. The use of gas injection in a vaneless diffuser allows reducing the power consumption during antisurge control in comparison with the widespread bypass suction system at the entrance to the impeller


Author(s):  
Y.B. Galerkin ◽  
A.F. Rekstin ◽  
O.A. Solovyeva

The advances in the primary design method of centrifugal compressors of the Universal Modeling Method have led to the need to analyze and revise the recommendations for the optimal size and configuration selection of vaneless diffusers of centrifugal compressor stages. The results of CFD calculations of a family of vaneless diffusers with different relative width, radial length, velocity coefficients and flow angles at the inlet are used to develop new recommendations. The choice of the optimal width of the vaneless diffuser is based on ensuring a non-separable flow in it at the boundary of the surge. The optimal value of the relative radial length of the diffuser is in the range of 1.65–2.0. Considering the above, a formula for selecting the vaneless diffuser outer diameter is proposed depending on the design flow rate coefficient. The developed primary design method of vaneless diffusers is included in the software programs of the Universal Modeling Method and is used in design and research practice.


Sign in / Sign up

Export Citation Format

Share Document