Mississippi County Community College Solar Photovoltaic Total Energy Project

1979 ◽  
Author(s):  
E. M. Henry

Mississippi County Community College at Blytheville, Arkansas, will derive its total electrical and thermal energy demand from an actively cooled photovoltaic energy system being developed under the management of TEAM, Inc. of Springfield, Virginia. The facility has a design peak electrical requirement for 240 kw to be supplied by a 26-sun concentrating collector field that fully tracks E-W. A 2.4 megawatt-hour electrical energy storage system under consideration is an iron redox system using FeCl2 electrolyte and pressure-molded carbon/PVC electrodes. The power conditioning system will include a 300-kw solid-state inverter to furnish 480-v, three-phase, 60-Hz ac to the College, and appropriate switching to acquire utility company power in emergencies. Process control includes the capability to gather vital signs on the collectors, thermal loop, electrical storage and building demands, and to provide closed-loop tracking and all control signals for energy efficient operation of the total system.

Author(s):  
Said Mirza Tercan ◽  
Onur Elma ◽  
Erdin Gokalp ◽  
Umit Cali

Growing energy demand in the distributed energy system (DES) besides new charging loads of electric vehicles (EVs) make DES infrastructure unavailable earlier than normal projections. DES lines need to be upgraded to carry the modern demand of customers. DES line upgrade (LU) cost minimized and deferred to the next years by using energy storage system (ESS). ESS offers the opportunity to use energy flexibly in the distribution grid. It is possible to use ESS to shift the inevitable upgrade costs of the distribution grid elements and increase the power quality of the distribution grid. In this study, a method is proposed to extend the lifespan of DES with ESS and reduce line upgrade and investment costs in the distribution system. For this purpose, the IEEE 33 bus test grid is used, and the proposed method is tested and analyzed with different case studies. According to the results, the proposed method can reduce the investment cost by up to 80%. Besides, ESS usage considering load increase and line conditions of the distribution grid, upgrade costs of distribution grid are shifted, resulting in an optimal dimensioning and positioning while extending the lifespan of the distribution grid elements and, at the same time, offering significant improvements in energy quality. Additionally, it is seen that the power losses of the distribution grid are reduced up to 26%, and the voltage profile of buses is improved with the usage of ESS.


2021 ◽  
Vol 252 ◽  
pp. 03009
Author(s):  
Jinghua Li ◽  
Chenbing Hua ◽  
Deyu Jiang ◽  
Qian Jiang ◽  
Kuihua Wu

Demand response plays a significant role in peak load shifting, storage capacity configuration and renewable energy utilization. A bi-level planning method for energy storage system of integrated community energy system considering the demand response is proposed in this paper. In the upper level, the investment cost of electrical energy storage and thermal energy storage, operation and maintenance cost and fuel cost of the integrated community energy system, as well as the compensation cost to the energy consumer, are considered; in the lower level, the responded demand of the energy consumer is taken into consideration to minimize the energy bill of the energy consumer. An actual planning for energy storage system of integrated community energy system shows the effectiveness of the proposed method.


2021 ◽  
pp. 014459872110583
Author(s):  
Said Mirza Tercan ◽  
Onur Elma ◽  
Erdin Gokalp ◽  
Umit Cali

The recent advances in the modern power grids, such as growing energy demand and penetration of higher amounts of distributed energy generators like renewable energy resources, caused additional grid integration challenges for the distributed energy system operators. Besides, deep electrification impacts triggered by a growing share of electric vehicles as additional electric loads made it essential for the distributed energy system operators to re-investigate their upgrade plans in terms of distributed energy system lines and corresponding infrastructure investments. An energy storage system offers the opportunity to use energy flexibly, resulting in deferring the inevitable upgrade costs of the distribution grid elements and increasing the power quality. In this study, a new method is proposed to extend the lifespan of distributed energy systems with an energy storage system and reduce line upgrade costs. The proposed method is tested on the IEEE-33 with different case studies. The findings of this study indicated that the investigated energy storage option has a positive impact on the distributed energy system components and assets in terms of extending their lifespan and helping to mitigate growing demand peaks because of the load increase. According to the results, the proposed method reduces the total cost by up to 66%. Furthermore, the power losses are reduced by an average of 34.8%, and the voltage profiles are improved with the energy storage system.


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


2020 ◽  
Vol 205 ◽  
pp. 07001
Author(s):  
Hans Henning Stutz ◽  
Peter Norlyk ◽  
Kenneth Sørensen ◽  
Lars Vabbersgaard Andersen ◽  
Kenny Kataoka Sørensen ◽  
...  

The increasing need for energy storage technology has led to a massive interest in novel energy storage methods. The energy geomembrane system is such a novel energy storage method. The concept of the system is briefly introduced, and a holistic numerical model of the system is presented. The model uses advanced finite-element techniques to model the energy storage system using fluid cavity elements. The developed geomembrane energy system is modelled with different constitutive models to represent the soil behaviour: a linear elastic model, a nonlinear Mohr-Coulomb model, and a hypoplastic constitutive model. The consequences of these different models on the results are studied. Hereby, the focus is the first inflation and deflation cycle of the system.


Sign in / Sign up

Export Citation Format

Share Document