scholarly journals Effects of Tip Endwall Contouring on the Three Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 2 — Numerical Investigation

Author(s):  
Tony Arts

This paper describes the numerical investigation of the three dimensional flow through a low speed, low aspect ratio, high turning annular turbine nozzle guide vane with meridional tip endwall contouring. This rotational flow field has been simulated using a finite volume discretization and a time marching technique to solve the three dimensional, time dependent Euler equations expressed in a cylindrical coordinates system. The results are presented under the form of contour plots, spanwise pitch-averaged distributions and blade static pressure distributions. Detailed comparisons with the measurements described in part I of the paper are also provided.

1985 ◽  
Vol 107 (4) ◽  
pp. 983-990 ◽  
Author(s):  
E. Boletis

Tip endwall contouring is one of the most effective methods to improve the performance of low aspect ratio turbine vanes [1]. In view of the wide variety of geometric parameters, it appears that only the physical understanding of the three-dimensional flow field will allow us to evaluate the probable benefits of a particular endwall contouring. The paper describes the experimental investigation of the three-dimensional flow through a low-speed, low aspect ratio, high-turning annular turbine nozzle guide vane with meridional tip endwall contouring. The full impact of the effects of tip contouring is evaluated by comparison with the results of a previous study in an annular turbine nozzle guide vane of the same blade and cascade geometry with cylindrical endwalls [12]. In parallel, the present experimental study provides a fully three-dimensional test case for comparison with advanced theoretical calculation methods [15]. The flow is explored by means of double-head, four-hole pressure probes in five axial planes from far upstream to downstream of the blade row. The results are presented in the form of contour plots and spanwise pitch-averaged distributions.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marco Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a 3-D Navier-Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field has been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development is inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass averaged losses shows a significant performance improvement in the contoured cascade. This has to be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


Author(s):  
Wu Sang Lee ◽  
Jin Taek Chung ◽  
Dae Hyun Kim ◽  
Seung Joo Choe

The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear turbine with contoured endwall configurations was used and changes in the three-dimensional flow field were analyzed and discussed. Contoured endwalls are installed at a location downstream of the saddle point near the leading edge of the pressure side blade and several positions along the centerline of the passage at constant distance. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. In addition, it proposes and appropriates endwall contouring which shows best overall loss reduction performance among the simulated contoured endwall. The results of this study show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall, the best performance was shown for the case of 10–15% contoured for span-wise, 40–70% length of chord from trailing edge.


1999 ◽  
Vol 121 (2) ◽  
pp. 200-208 ◽  
Author(s):  
V. Dossena ◽  
A. Perdichizzi ◽  
M. Savini

The paper presents the results of a detailed investigation of the flow field in a gas turbine linear cascade. A comparison between a contoured and a planar configuration of the same cascade has been performed, and differences in the three-dimensional flow field are here analyzed and discussed. The flow evolution downstream of the trailing edge was surveyed by means of probe traversing while a three-dimensional Navier–Stokes solver was employed to obtain information on flow structures inside the vaned passages. The experimental measurements and the numerical simulation of the three-dimensional flow field have been performed for two cascades; one with planar endwalls, and the other with one planar and one profiled endwall, so as to present a reduction of the nozzle height. The investigation was carried out at an isentropic downstream Mach number of 0.6. Airfoils of both cascades were scaled from the same high-pressure gas turbine inlet guide vane. Measurements of the three-dimensional flow field have been performed on five planes downstream of the cascades by means of a miniaturized five-hole pressure probe. The presence of endwall contouring strongly influences the secondary effects; the vortex generation and their development are inhibited by the stronger acceleration taking place throughout the cascade. The results show that the secondary effects on the contoured side of the passage are confined in the endwall region, while on the flat side the secondary vortices display characteristics similar to the ones occurring downstream of the planar cascade. The spanwise outlet angle distribution presents a linear variation for most of the nozzle height, with quite low values approaching the contoured endwall. The analysis of mass-averaged losses shows a significant performance improvement in the contoured cascade. This can be ascribed not only to lower secondary losses but also to a reduction of the profile losses.


Author(s):  
E. Boletis ◽  
C. H. Sieverding

Measurements of the three dimensional flow field in annular turbine nozzle guide vanes present an important step in the simulation of the real flow conditions in turbomachinery bladings. This paper seeks to determine whether the installation of a rotor closely behind a high hub-to-tip ratio cascade (DH/DT=0.8) is indispensable for establishing correct flow conditions at the cascade exit or whether the use of an axial diffuser of a certain length is sufficient. Also, an attempt is made to separate the possible effects of the rotor blades from that of the rotating rotor disc. The tests are carried out on a low speed, low aspect ratio, high turning nozzle guide vane. The flow is explored by means of a double head four-hole pressure probe and the results are presented in the form of contour plots and spanwise pitch-averaged distributions of losses, flow angles and static pressure.


Author(s):  
Steven W. Burd ◽  
Terrence W. Simon

The vast number of turbine cascade studies in the literature has been performed in straight-endwall, high-aspect-ratio, linear cascades. As a result, there has been little appreciation for the role of, and added complexity imposed by, reduced aspect ratios. There also has been little documentation of endwall profiling at these reduced spans. To examine the role of these factors on cascade hydrodynamics, a large-scale nozzle guide vane simulator was constructed at the Heat Transfer Laboratory of the University of Minnesota. This cascade is comprised of three airfoils between one contoured and one flat endwall. The geometries of the airfoils and endwalls, as well as the experimental conditions in the simulator, are representative of those in commercial operation. Measurements with hot-wire anemometry were taken to characterize the flow approaching the cascade. These measurements show that the flow field in this cascade is highly elliptic and influenced by pressure gradients that are established within the cascade. Exit flow field measurements with triple-sensor anemometry and pressure measurements within the cascade indicate that the acceleration imposed by endwall contouring and airfoil turning is able to suppress the size and strength of key secondary flow features. In addition, the flow field near the contoured endwall differs significantly from that adjacent to the straight endwall.


Author(s):  
M. Funes-Gallanzi ◽  
P. J. Bryanston-Cross ◽  
K. S. Chana

The quantitative whole field flow visualization technique of PIV has over the last few years been successfully demonstrated for transonic flow applications. A series of such measurements has been made at DRA Pyestock. Several of the development stages critical to a full engine application of the work have now been achieved using the Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels: • A method of seeding the flow with 0.5μm diameter styrene particles has provided an even coverage of the flow field. • A method of projecting a 1 mm thick high power Nd/YAG laser light sheet within the turbine stator cascade. This has enabled a complete instantaneous intra-blade velocity mapping of the flow field to be visualized, by a specially developed diffraction-limited optics arrangement. • Software has been developed to automatically analyze the data. Due to the sparse nature of the data obtained, a spatial approach to the extraction of the velocity vector data was employed. • Finally, a comparison of the experimental results with those obtained from a three-dimensional viscous flow program of Dawes; using the Baldwin-Lomax model for eddy viscosity and assuming fully turbulent flow. The measurements provide an instantaneous quantitative whole field visualization of a high-speed unsteady region of flow in a highly three-dimensional nozzle guide vane; which has been successfully compared with a full viscous calculation. This work represents the first such measurements to be made in a full-size transonic annular cascade at engine representative conditions.


1991 ◽  
Vol 113 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E. Boletis ◽  
C. H. Sieverding

The paper describes the experimental investigation of the three-dimensional flow field through a low aspect ratio, high turning turbine stator preceded by a full stage. This configuration simulates as closely as possible the flow conditions for an intermediate stator in a multistage machine, although the use of cylindrical rotor blades does not reflect typical gas turbine design practice. The inlet conditions to the stator are significantly different from those reported in previous investigations dealing with tests in isolated cascades, e.g., Sieverding (1985); Marchal and Sieverding (1977); Sieverding et al. (1984); Klein (1969); Bindon (1979, 1980); Wegel (1970); and Boletis (1985). The inlet flow field to the stator is characterized by both radial and circumferential gradients. Inlet skew occurs on both endwalls but the overall shape does not resemble those that are generated in isolated cascades by rotating the upstream endwalls. Rotor clearance effects are of predominant importance for the flow field at the tip endwall region. The flow field is explored by means of double head four-hole pressure probes in five axial planes from upstream to far downstream of the stator. The results are presented in the form of contour plots and spanwise pitch-averaged distributions.


1984 ◽  
Vol 106 (2) ◽  
pp. 437-444 ◽  
Author(s):  
C. H. Sieverding ◽  
W. Van Hove ◽  
E. Boletis

The paper describes the experimental investigation of the three-dimensional flow through a low-speed, low aspect ratio, high turning annular turbine nozzel guide vane. The flow is explored by means of double-head, four-hole pressure probes in twelve axial planes from upstream to far downstream of the blade row. The results are presented under the form of contour plots and spanwise pitch-averaged distributions of losses, flow angles, and static pressure distributions. The concept of presenting the evolution of the endwall boundary layer under the form of streamwise and crossflow velocity components is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document