scholarly journals Endwall Heat Transfer in a Vane Cascade Passage and in a Curved Duct

Author(s):  
M. T. Boyle ◽  
K. V. Hoose

Measurements of endwall heat transfer coefficient have been made for flow through a vane cascade passage and a similarly shaped duct. The purpose of this work is to evaluate the usefulness of the duct shape for modelling cascade endwall heat transfer. The Reynolds number for the cascade experiment is 5.4 × 105 based on chord. For the duct geometry the inlet velocity is adjusted in order to match the Reynolds number based on the pitch dimension. Thin stainless steel strips mounted on the endwall make up a large flat resistance heater. The temperature distribution over the heater surface is measured with 156 resistance temperature sensors. Surface heat transfer coefficient is obtained in the vicinity of each sensor by a local energy balance. The results are presented so as to show clearly the effect of secondary flow on endwall heat transfer. Except in the entrance plane region, the qualities of the cascade endwall Stanton number distribution compare well with the duct endwall measurements. The duct endwall heat transfer coefficients are everywhere greater than for the cascade passage endwall. The effect of a counter-clockwise rotating vortex in the suction side corner is shown clearly for both geometries.

Author(s):  
Jae Su Kwak ◽  
Jaeyong Ahn ◽  
Je-Chin Han ◽  
C. Pang Lee ◽  
Robert Boyle ◽  
...  

Detailed heat transfer coefficient distributions on a gas turbine squealer tip blade were measured using a hue detection based transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Squealer rims were located along (a) the camber line, (b) the pressure side, (c) the suction side, (d) the pressure and suction sides, (e) the camber line and the pressure side, and (f) the camber line and the suction side, respectively. Tests were performed on a five-bladed linear cascade with a blow down facility. The Reynolds number based on the cascade exit velocity and the axial chord length of a blade was 1.1×106 and the overall pressure ratio was 1.2. Heat transfer measurements were taken at the three tip gap clearances of 1.0%, 1.5% and 2.5% of blade span. Results show that the heat transfer coefficients on the blade tip and the shroud were significantly reduced by using a squealer tip blade. Results also showed that a different squealer geometry arrangement changed the leakage flow path and resulted in different heat transfer coefficient distributions. The suction side squealer tip provided the lowest heat transfer coefficient on the blade tip and near tip regions compared to the other squealer geometry arrangements.


Author(s):  
I. C. Finlay ◽  
T. McMillan

The results of a study of heat transfer and hydrodynamic phenomena during flow of an air-water mist across a heated, horizontal cylinder are reported. Local and average heat-transfer coefficients have been obtained, under conditions of constant heat flux, on the outer surface of a 19-mm outside diameter cylinder. Air flow rates corresponding to approach velocities of 20–75 m/s have been explored with mixture qualities in the range 0–9 per cent by weight of liquid phase. Heat-transfer coefficients were found to be strongly dependent on mixture quality, and increases in the average value of the surface heat-transfer coefficient of twenty times the corresponding dry gas values were recorded with mixture qualities approaching 9 per cent by weight of liquid. Under all conditions explored, a liquid layer was observed to form over the front half of the tube, between forward stagnation and separation. An intense bouncing or splashing action of droplets impinging on this layer was observed and measured. Average values of surface heat-transfer coefficient were found to be correlated in terms of the quality and Reynolds number of the mixture and of Nusselt numbers based on average and stagnation point heat-transfer coefficients.


Author(s):  
Yasuo Koizumi ◽  
Atsushi Katsuta ◽  
Hiroyasu Ohtake

Heat transfer and flow behavior in a mini-tube bank was examined. The tube bank was simulated with wires of 1 mm diameter. The wires were arranged in the 5×5 in-line array and the 5×5 staggered array with the arranging pitch = 3. Experiments were performed in the range of the tube Reynolds number Re = 4 ∼ 3,500. Numerical analyses were also performed with the commercial CFD code of STAR-CD. The heat transfer coefficient of the tube of the first row was well expressed with the existing heat transfer correlations. In the case of the in-line array, unlike usual sized tube banks, the measured heat transfer coefficients of the tubes after the second row were lower than those of the first row and the difference between those increased as the Reynolds number was increased. At approximately Reynolds number ≃ 50, the difference turned to decrease; the heat transfer coefficients initiate to recover to the first row value. Then, the heat transfer coefficient in the rear row became larger at approximately Re ≃ 1,000 than that of the first row. In the case of the staggered array, the decrease in the heat transfer coefficient in the rear row was smaller than that in the case of the in-line array. The recovery of the heat transfer coefficient to the first row value started at a little bit lower Reynolds number and it exceeded the first row value at approximately Re ≃ 700. The flow visualization results and also the STAR-CD analytical results indicated that when the Reynolds number was low, the wake region of the preceding tube was stagnant. This flow stagnation caused the heat transfer deterioration in the front part of the rear tube, which resulted in the lower heat transfer coefficient of the rear tube than that of the first row. As the Reynolds number was increased, the flow state in the wake region changed from the stagnant condition to the more disturbed condition by periodical shedding of the Karman vortex. This change caused the recovery of the heat transfer in the front region of the rear tube, which resulted in the recovery of the heat transfer coefficient of the rear tube.


2003 ◽  
Vol 125 (4) ◽  
pp. 778-787 ◽  
Author(s):  
Jae Su Kwak ◽  
Jaeyong Ahn ◽  
Je-Chin Han ◽  
C. Pang Lee ◽  
Ronald S. Bunker ◽  
...  

Detailed heat transfer coefficient distributions on a gas turbine squealer tip blade were measured using a hue detection based transient liquid-crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Squealer rims were located along (a) the camber line, (b) the pressure side, (c) the suction side, (d) the pressure and suction sides, (e) the camber line and the pressure side, and (f) the camber line and the suction side, respectively. Tests were performed on a five-bladed linear cascade with a blow down facility. The Reynolds number based on the cascade exit velocity and the axial chord length of a blade was 1.1×106 and the overall pressure ratio was 1.2. Heat transfer measurements were taken at the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span. Results show that the heat transfer coefficients on the blade tip and the shroud were significantly reduced by using a squealer tip blade. Results also showed that a different squealer geometry arrangement changed the leakage flow path and resulted in different heat transfer coefficient distributions. The suction side squealer tip provided the lowest heat transfer coefficient on the blade tip and near tip regions compared to the other squealer geometry arrangements.


Author(s):  
Ronald S. Bunker

The present investigation provides detailed information concerning the heat transfer coefficients and pressures in latticework (vortex) cooling channels. Two test methods are used to determine the local and overall heat transfer coefficients for a vortex channel with crossing angle of 45-degrees. Both liquid crystal and infrared thermography methods are used on acrylic and metallic models to discern the heat transfer coefficients without and with the effects of internal rib fin effectiveness. Tests with insulating ribs determine the heat transfer on the primary surfaces representing the pressure and suction side walls of an airfoil. Tests with integral metal ribs determine the additional impact of the fin effectiveness provided by the ribs. A simple radial vortex channel design is employed throughout with subchannel aspect ratios near unity, and Reynolds numbers from 20,000 to 100,000. Pressure loss variations through typical vortex channels are also measured. The objectives of this research are to show the detailed development of heat transfer in vortex channels leading to an understanding of the two main effects of turning and fin enhancements. Detailed primary surface heat transfer coefficients average about 1.5 over smooth duct behavior, but reach local values of about 3 immediately after each turn. Pressure distributions show high turning losses on the order of those associated with serpentine 180-degree turn circuits. Local heat transfer coefficient distributions are remarkably uniform throughout the channels excepting the turns themselves. Turn enhancements are retained for relatively long distances. Overall vortex channel heat transfer coefficient enhancement levels are shown to be 2.5 to 3. The effects of subchannel internal ribs, which act as fins, are shown to be very important in the overall thermal picture. Test results show that treatment of the ribs as simple fins is appropriate and that each rib surface has about the same heat transfer coefficient on average as that of the primary surface. This first detailed study shows that latticework channels have significant potential and should be further investigated.


Author(s):  
M. Arai ◽  
Y. Koizumi ◽  
H. Ohtake

Heat transfer and flow behavior in the mini rod bank were examined. The tube bank was simulated with 5 wires of 1 mm diameter. The wires were arranged on the center line of the flow channel of 30 mm wide, 15 mm high and 300 mm long. The pitch between wires were varied from 1.5 mm to 9 mm. Experiments were performed in the range of the rod Re = 1 ∼ 400, i.e. the flow velocity in the channel was in the range of 0.0036 m/s ∼ 0.34 m/s. The measured heat transfer coefficients of the first row were a little bit higher than, rather close to, the predicted values by the correlations. The heat transfer coefficients after the second row were lower than those of the first row. The difference between those increased as the Reynolds number was increased. Around Reynolds number = 100, the difference turned to decrease. After the occurrence of the heat transfer coefficient recovery in the rows after the second row, the deeper the row was, the larger the heat transfer coefficient was. The flow visualization results and the analytical results by the STAR-CD code indicated that when the Reynolds number was low, the wake region of the preceding rod was stagnant. This flow stagnation caused the heat transfer coefficient deterioration around the stagnation point of the rear rod. As the Reynolds number was increased, the flow state in the wake region changed from the stagnant condition to the more disturbed condition by periodical shedding of the Karman vortex from the preceding rod. This agitation of the wake region by the vortices caused the recovery of the deteriorated heat transfer coefficients. The deeper the row was, the more disturbed the wake flow state was. The measured average heat transfer coefficients of the tube bank agreed well with the analytical results by the STAR-CD code. The measured and the analyzed results were close to the predicted values by correlations.


1985 ◽  
Vol 107 (2) ◽  
pp. 354-360 ◽  
Author(s):  
G. H. Junkhan ◽  
A. E. Bergles ◽  
V. Nirmalan ◽  
T. Ravigururajan

This paper summarizes an experimental study of three popular “turbulator” inserts for fire tube boilers. An electrically heated flow facility was developed to deliver hot air to a water-cooled steel tube instrumented to derive sectional average heat transfer coefficients for four regions of the tube. Reference data for the empty tube are in excellent agreement with the accepted correlation. Two commercial turbulators, consisting of narrow, thin metal strips bent and twisted in zig-zag fashion to allow periodic contact with the tube wall, displayed 135 and 175 percent increases in heat transfer coefficient at a Reynolds number of 10,000. A third commercial turbulator, consisting of a twisted strip with width slightly less than tube diameter, provided a 65 percent increase in heat transfer coefficient. The friction factor increases accompanying these heat transfer coefficient increases were 1110, 1000, and 160 percent, respectively, for the same Reynolds number. These data should be useful in assessing overall performance gains to be expected when turbulators are used in actual boilers.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


Author(s):  
Jatuporn Kaew-On ◽  
Somchai Wongwises

The evaporation heat transfer coefficients and pressure drops of R-410A and R-134a flowing through a horizontal-aluminium rectangular multiport mini-channel having a hydraulic diameter of 3.48 mm are experimentally investigated. The test runs are done at refrigerant mass fluxes ranging between 200 and 400 kg/m2s. The heat fluxes are between 5 and 14.25 kW/m2, and refrigerant saturation temperatures are between 10 and 30 °C. The effects of the refrigerant vapour quality, mass flux, saturation temperature and imposed heat flux on the measured heat transfer coefficient and pressure drop are investigated. The experimental data show that in the same conditions, the heat transfer coefficients of R-410A are about 20–50% higher than those of R-134a, whereas the pressure drops of R-410A are around 50–100% lower than those of R-134a. The new correlations for the evaporation heat transfer coefficient and pressure drop of R-410A and R-134a in a multiport mini-channel are proposed for practical applications.


1993 ◽  
Vol 115 (4) ◽  
pp. 231-236 ◽  
Author(s):  
V. B. Sharma ◽  
S. C. Mullick

An approximate method for calculation of the hourly output of a solar still over a 24-hour cycle has been studied. The hourly performance of a solar still is predicted given the values of the insolation, ambient temperature, wind heat-transfer coefficient, water depth, and the heat-transfer coefficient through base and sides. The proposed method does not require graphical constructions and does not assume constant heat-transfer coefficients as in the previous methods. The possibility of using the values of the heat-transfer coefficients for the preceding time interval in the heat balance equations is examined. In fact, two variants of the basic method of calculation are examined. The hourly rate of evaporation is obtained. The results are compared to those obtained by numerical solution of the complete set of heat balance equations. The errors from the approximate method in prediction of the 24-hour output are within ±1.5 percent of the values from the numerical solution using the heat balance equations. The range of variables covered is 5 to 15 cms in water depth, 0 to 3 W/m2K in a heat-transfer coefficient through base and sides, and 5 to 40 W/m2K in a wind heat-transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document