scholarly journals Similarity Behavior in Transitional Boundary Layers Over a Range of Adverse Pressure Gradients and Turbulence Levels

Author(s):  
J. P. Gostelow ◽  
G. J. Walker

Boundary layer transition has been investigated experimentally under low, moderate and high free-stream turbulence levels and varying adverse pressure gradients. Under high turbulence levels and adverse pressure gradients a pronounced subtransition was present. A strong degree of similarity in intermittency distributions was observed, for all conditions, when the Narasimha procedure for determination of transition inception was used. Effects of free-stream turbulence on the velocity profile are particularly strong for the laminar boundary layer upstream of the transition region. This could reflect the influence of the turbulence on the shear stress distribution throughout the layer and this matter needs further attention. The velocity profiles in wall coordinates undershoot the turbulent wall layer asymptote near the wall over most of the transition region. The rapidity with which transition occurs under adverse pressure gradients produces strong lag effects on the velocity profile; the starting turbulent boundary layer velocity profile may depart significantly from local equilibrium conditions. The practice of deriving integral properties and skin friction for transitional boundary layers by a linear combination of laminar and turbulent values for equilibrium layers is inconsistent with the observed lag effects. The velocity profile responds sufficiently slowly to the perturbation imposed by transition that much of the anticipated drop in form factor will not have occurred prior to the completion of transition. This calls into question both experimental techniques which rely on measured form factor to characterize transition and boundary layer calculations which rely on local equilibrium assumptions in the vicinity of transition.

1991 ◽  
Vol 113 (4) ◽  
pp. 617-624 ◽  
Author(s):  
J. P. Gostelow ◽  
G. J. Walker

Boundary layer transition has been investigated experimentally under low, moderate, and high free-stream turbulence levels and varying adverse pressure gradients. Under high turbulence levels and adverse pressure gradients a pronounced subtransition was present. A strong degree of similarity in intermittency distributions was observed, for all conditions, when the Narasimha procedure for determination of transition inception was used. Effects of free-stream turbulence on the velocity profile are particularly strong for the laminar boundary layer upstream of the transition region. This could reflect the influence of the turbulence on the shear stress distribution throughout the layer and this matter needs further attention. The velocity profiles in wall coordinates undershoot the turbulent wall layer asymptote near the wall over most of the transition region. The rapidity with which transition occurs under adverse pressure gradients produces strong lag effects on the velocity profile; the starting turbulent boundary layer velocity profile may depart significantly from local equilibrium conditions. The practice of deriving integral properties and skin friction for transitional boundary layers by a linear combination of laminar and turbulent values for equilibrium layers is inconsistent with the observed lag effects. The velocity profile responds sufficiently slowly to the perturbation imposed by transition that much of the anticipated drop in form factor will not have occurred prior to the completion of transition. This calls into question both experimental techniques, which rely on measured form factor to characterize transition, and boundary layer calculations, which rely on local equilibrium assumptions in the vicinity of transition.


1976 ◽  
Vol 98 (4) ◽  
pp. 723-726 ◽  
Author(s):  
R. B. Dean

An expression for the wake deficit g(Π, y/δ) in a turbulent boundary layer is combined with a function f(U+) for the inner layer to yield a single formula for the complete velocity profile in the form y+ exp {Kg(Π, y/δ)} = f(U+). Close agreement is shown with data from boundary layers in a wide range of pressure gradients and beneath a turbulent free stream. The formula will be particularly useful for integral and differential calculation methods.


1996 ◽  
Vol 118 (4) ◽  
pp. 728-736 ◽  
Author(s):  
S. P. Mislevy ◽  
T. Wang

The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = −0.51 × 10−6 and K2 = −1.05 × 10−6. The fluctuation quantities, u′, ν′, t′, the Reynolds shear stress (uν), and the Reynolds heat fluxes (νt and ut) were measured. In general, u′/U∞, ν′/U∞, and νt have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of ν′ for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall region of high-turbulent shear generated at Y+ = 7. At stations farther downstream, this near-wall shear reduced in magnitude, while a second region of high-turbulent shear developed at Y+ = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y+ = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t′ in the near-wall region (Y+ < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large non turbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent fluctuations such that the production of turbulent spots was obscured. The turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Prt, are also presented.


1966 ◽  
Vol 33 (2) ◽  
pp. 429-437 ◽  
Author(s):  
J. C. Rotta

A review is given of the recent development in turbulent boundary layers. At first, for the case of incompressible flow, the variation of the shape of velocity profile with the pressure gradient is discussed; also the temperature distribution and heat transfer in incompressible boundary layers are treated. Finally, problems of the turbulent boundary layer in compressible flow are considered.


1998 ◽  
Vol 374 ◽  
pp. 91-116 ◽  
Author(s):  
IAN P. CASTRO ◽  
ELEANORA EPIK

Measurements obtained in boundary layers developing downstream of the highly turbulent, separated flow generated at the leading edge of a blunt flat plate are presented. Two cases are considered: first, when there is only very low (wind tunnel) turbulence present in the free-stream flow and, second, when roughly isotropic, homogeneous turbulence is introduced. With conditions adjusted to ensure that the separated region was of the same length in both cases, the flow around reattachment was significantly different and subsequent differences in the development rate of the two boundary layers are identified. The paper complements, but is much more extensive than, the earlier presentation of some of the basic data (Castro & Epik 1996), confirming not only that the development process is very slow, but also that it is non-monotonic. Turbulence stress levels fall below those typical of zero-pressure-gradient boundary layers and, in many ways, the boundary layer has features similar to those found in standard boundary layers perturbed by free-stream turbulence. It is argued that, at least as far as the turbulence structure is concerned, the inner layer region develops no more quickly than does the outer flow and it is the latter which essentially determines the overall rate of development of the whole flow. Some numerical computations are used to assess the extent to which current turbulence models are adequate for such flows.


1994 ◽  
Vol 281 ◽  
pp. 219-245 ◽  
Author(s):  
A. V. Boiko ◽  
K. J. A. Westin ◽  
B. G. B. Klingmann ◽  
V. V. Kozlov ◽  
P. H. Alfredsson

The natural occurrence of Tollmien-Schlichting (TS) waves has so far only been observed in boundary layers subjected to moderate levels of free stream turbulence (Tu < 1%), owing to the difficulty in detecting small-amplitude waves in highly perturbed boundary layers. By introducing controlled oscillations with a vibrating ribbon, it is possible to study small-amplitude waves using phase-selective filtering techniques. In the present work, the effect of TS-waves on the transition is studied at Tu = 1.5%. It is demonstrated that TS-waves can exist and develop in a similar way as in an undisturbed boundary layer. It is also found that TS-waves with quite small amplitudes are involved in nonlinear interactions which lead to a regeneration of TS-waves in the whole unstable frequency band. This results in a significant increase in the number of turbulent spots, which promote the onset of turbulence.


1995 ◽  
Vol 117 (1) ◽  
pp. 166-174 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Recent experimental studies of two-dimensional boundary layers undergoing bypass transition have been reviewed to attempt to characterize the effects of free-stream turbulence level, acceleration, and wall curvature on bypass transition. Results from several studies were cast in terms of “local” boundary layer coordinates (momentum and enthalpy thickness Reynolds numbers) and compared. In unaccelerated flow on flat walls, skin friction coefficients were shown to match those from a laminar integral solution before transition and quickly adjusted to match those from a fully turbulent correlation after transition. Stanton number data also matched a correlation in the laminar region, but do not match correlation values so well in the turbulent region. The data showed that the relationship between skin friction coefficient and momentum thickness Reynolds number is unaffected by streamwise acceleration. Stanton numbers were strongly affected by acceleration, however, indicating a breakdown in Reynolds analogy. Concave curvature caused the formation of Go¨rtler vortices, which strongly influenced the skin friction. Convex curvature had an opposite, and lesser effect. The location and length of the transition region generally followed the expected trends as free-stream turbulence level, curvature, and acceleration were varied; the onset location and the transition length were extended by acceleration and convex curvature and reduced by concave curvature and enhanced turbulence. When individual cases were compared, some inconsistencies were observed. These inconsistencies indicate a need to characterize the flows to be compared more completely. Better spectral and length scale measurements of the free-stream disturbance would help in this regard. Within the transition region, the intermittency data from all the cases on flat walls (no curvature) were consistent with an intermittency distribution from the literature. Turbulent spot production rates were shown to be mostly dependent on free-stream turbulence, with a noted increase in spot production rate due to concave curvature and little effect of convex curvature. The acceleration effect on spot production rate was small for the cases studied.


1985 ◽  
Vol 107 (1) ◽  
pp. 54-59 ◽  
Author(s):  
K. Rued ◽  
S. Wittig

Heat transfer and boundary layer measurements were derived from flows over a cooled flat plate with various free-stream turbulence intensities (Tu = 1.6–11 percent), favorable pressure gradients (k = νe/ue2•due/dx = 0÷6•10−6) and cooling intensities (Tw/Te = 1.0–0.53). Special interest is directed towards the effects of the dominant parameters, including the influence on laminar to turbulent boundary layer transition. It is shown, that free-stream turbulence and pressure gradients are of primary importance. The increase of heat transfer due to wall cooling can be explained primarily by property variations as transition, and the influence of free-stream parameters are not affected.


Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson ◽  
K. Johan A. Westin

Transition to turbulence in laminar boundary layers subjected to high levels of free stream turbulence (FST) can still not be reliably predicted, despite its technical importance, e.g. in the case of boundary layers developing on gas turbine blades. In a series of experiments in the MTL-wind tunnel at KTH the influence of grid-generated FST on boundary layer transition has been studied, with FST-levels up to 6%. It was shown from both flow visualisation and hot-wire measurements that the boundary layer develops unsteady streaky structures with high and low streamwise velocity. This leads to large amplitude low frequency fluctuations inside the boundary layer although the mean flow is still close to the laminar profile. Breakdown to turbulence occurs through an instability of the streaks which leads to the formation of turbulent spots. Accurate physical modelling of these processes seems to be needed in order to obtain a reliable prediction method.


Author(s):  
Mark W. Johnson

Experimental data for laminar boundary layers developing below a turbulent free stream shows that the fluctuation velocities within the boundary layer increase in amplitude until some critical level is reached which initiates transition. In the near wall region, a simple model, containing a single empirical parameter which depends only on the turbulence level and length scale, is derived to predict the development of the velocity fluctuations in laminar boundary layers with favourable, zero or adverse pressure gradients. A simple bypass transition model which considers the streamline distortion in the near wall region brought about by the velocity fluctuations suggests that transition will commence when the local turbulence level reaches approximately 23%. This value is consistent with experimental findings. This critical local turbulence level is used to derive a bypass transition prediction formula which compares reasonably with start of transition experimental data for a range of pressure gradients (λθ = −0.01 to 0.01) and turbulence levels (Tu = 0.2% to 5%). Further improvement to the model is proposed through prediction of the boundary layer distortion, which occurs due to Reynolds stresses generated within the boundary layer at high free stream turbulence levels and also through inclusion of the effect of turbulent length scale as well as turbulence level.


Sign in / Sign up

Export Citation Format

Share Document