Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
Latest Publications


TOTAL DOCUMENTS

77
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878880

Author(s):  
A. Tourlidakis ◽  
R. L. Elder

In this paper, a three-dimensional computational model for the solution of the time-averaged Navier-Stokes equations, based on a pressure correction method and the k-ε turbulence model, is presented and implemented for the viscous flow modelling through a series of centrifugal compressors. Theoretical calculations with the current fully elliptic method are carried out and the results are compared critically with available experimental data and with results from other computational models. A radial and two backswept high-speed subsonic compressors with different geometrical and operating characteristics are analysed at design and off-design conditions. In all cases, a wake flow pattern is evident and strong secondary flows are discerned. The tip clearance effects on the relative flow pattern are found to be important and are appropriately simulated. The predictive capability of the current flow model is judged to be encouraging taking into consideration the limitations of the physical models and the numerical schemes involved in the computations.


Author(s):  
T. Valkov ◽  
C. S. Tan

A computational approach, based on a spectral-element Navier-Stokes solver, has been applied to the study of the unsteady flow arising from wake-stator interaction. Direct, as well as turbulence-model calculations, provide insight into the mechanics of the unsteady flow and demonstrate the potential for controlling its effects. The results show that the interaction between the wakes and the stator blades produces a characteristic pattern of vortical disturbances, which have been correlated to the pressure fluctuations. Within the stator passage, the wakes migrate towards the pressure surface where they evolve into counter-rotating vortices. These vortices are the dominant source of disturbances over the pressure surface of the stator blade. Over the suction surface of the stator blade, the disturbances are due to the distortion and detachment of boundary layer fluid. They can be reduced by tailoring the blade loading or by applying non-uniform suction.


Author(s):  
Shih H. Chen ◽  
Anthony H. Eastland

A compressible three-dimensional implicit Euler solution method for turbomachinery flows has been developed. The goal of the present study is to develop an efficient and reliable method that can be used to replace the semi-empirical, semi-analytical quasi-three-dimensional turbomachinery flow prediction method currently being used for multi-stage turbomachinery design at early design stages. Currently, a methodology has been developed based on an inviscid flow model (Euler solver) and tested on single blade rows for validation. The method presented here is derived from the Beam and Warming implicit approximate factorization (AF) finite difference algorithm. To avoid high frequency numerical instabilities associated with the use of central differencing schemes to obtain a spatial second order accuracy, a combined explicit and implicit artificial dissipation model is adopted. This model consists of a second order implicit dissipation and mixed second/fourth order explicit dissipation terms. A Cartesian coordinate H-grid generated by a three-dimensional interactive grid generator developed by Beach is used. Results for SSME High Pressure Fuel Turbine are presented and the comparison with experimental data is discussed. The use of the present implicit Euler method and the three-dimensional turbomachinery interactive grid generator shows that turnaround time could be as short as one day using a workstation. This allows the designers to explore optimal design configurations at minimum cost.


Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


Author(s):  
Theodosios Korakianitis ◽  
Dequan Zou

This paper presents a new method to design (or analyze) subsonic or supersonic axial compressor and turbine stages and their three-dimensional velocity diagrams from hub to tip by solving the three-dimensional radial-momentum equation. Some previous methods (matrix through-flow based on the streamfunction approach) can not handle locally supersonic flows, and they are computationally intensive when they require the inversion of large matrices. Other previous methods (streamline curvature) require two nested iteration loops to provide a converged solution: an outside iteration loop for the mass-flow balance; and an inside iteration loop to solve the radial momentum equation at each flow station. The present method is of the streamline-curvature category. It still requires the iteration loop for the mass-flow balance, but the radial momentum equation at each flow station is solved using a one-pass numerical predictor-corrector technique, thus reducing the computational effort substantially. The method takes into account the axial slope of the streamlines. Main design characteristics such as the mass-flow rate, total properties at component inlet, hub-to-tip ratio at component inlet, total enthalpy change for each stage, and the expected efficiency of each streamline at each stage are inputs to the method. Other inputs are the radial position and axial velocity component at one surface of revolution through the axial stages. These can be provided for either the hub, or the mean, or the tip location of the blading. In addition the user specifies the azimuthal deflection of the flow from the axial direction at each radius (or as a function of radius) at each blade row inlet and outlet. By construction the method eliminates radial variations of total enthalpy (work) and entropy at each blade row inlet and outlet. In an alternative formulation enthalpy variations across radial positions at each axial station are included in the analysis. The remaining three-dimensional velocity diagrams from hub to tip, and the radial location of the remaining streamlines, are obtained by solving the momentum equation using a predictor-corrector method. Examples for one turbine and one compressor design are included.


Author(s):  
W. T. Cousins ◽  
K. K. Dalton ◽  
T. T. Andersen ◽  
G. A. Bobula

Altitude pressure and temperature inlet distortion testing of the two-stage centrifugal compressor in the T800-LHT-800 engine is described. The test setup and the testing techniques are reviewed and the results of the test are presented. The generation of classical 180 degree patterns of both pressure and temperature distortion is discussed. Temperature distortion was created using a hydrogen burner system while pressure distortion was created in the classical manner, using screens. Results of both individual and combined temperature and pressure distortions in both opposed and concurrent patterns are shown.


Author(s):  
J. F. Carrotte ◽  
K. F. Young ◽  
S. J. Stevens

A series of tests have been carried out to investigate the flow in a Compressor Outlet Guide Vane (OGV) blade row downstream of a single stage rotor. The subsequent flow field that developed within an OGV passage was measured, at intervals of 10% axial chord, using a novel design of miniature 5 hole pressure probe. In addition to indicating overall pressure levels and the growth of regions containing low energy fluid, secondary flow features were identified from calculated axial vorticity contours and flow vectors. Close to each casing the development of classical secondary flow was observed, but towards the centre of the annulus large well defined regions of opposite rotation were measured. These latter flows were due to the streamwise vorticity at inlet to the blade row associated with the skewed inlet profile. Surface static pressures were also measured and used to obtain the blade pressure force at 3 spanwise locations. These values were compared with the local changes in flow momentum calculated from the measured velocity distributions. With the exception of the flow close to the outer casing, which is affected by rotor tip leakage, good agreement was found between these quantities indicating relatively weak radial mixing.


Author(s):  
Awatef Hamed ◽  
Timothy P. Kuhn

This paper presents the results of an investigation to determine the effects of variational particle rebounding models on surface impacts and blade erosion patterns in gas turbines. The variance in the particle velocities after the surface impacts are modeled based on the experimental measurements using Laser Doppler Velocimetry (LDV) under varying flow conditions. The probabilistic particle trajectory computations simulate the experimental variance in the particle restitution characteristics using cumulative distribution functions and random sampling techniques. The results are presented for the particle dynamics through a gas turbine flow field and are compared to those obtained with deterministic rebound models based on experimental mean values.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Katsuhiko Sugiyama ◽  
Youichirou Ohkubo

A low emission combustor for a 100kW ceramic gas turbine, which is intended to meet Japanese emission standards for gasoline passenger cars, has been designed and subjected to initial performance tests. A prevaporization-premixing combustion system was chosen as the most suitable system for the combustor. The detailed combustor design, including the use of ceramic components and fuel injectors, was pursued taking into account the allowable engine dimensions for vehicle installation. In the initial performance tests conducted at a combustor inlet temperature of 773K, a low NOx level was obtained that satisfied the steady state target at this temperature level.


Author(s):  
M. Badger ◽  
A. Julien ◽  
A. D. LeBlanc ◽  
S. H. Moustapha ◽  
A. Prabhu ◽  
...  

The PT6 engine entered service in the mid-1960’s. Since then, application of new technology, has enabled low cost development of engines approaching 1500 KW, the introduction of electronic controls, improved power-to-weight ratio, higher cycle temperature and reduced specific fuel consumption. At the same time, PT6 field experience in business, commuter, helicopter and trainer applications has resulted in engines with low Direct Operating Cost and a reputation for rugged design and a high standard of engine reliability. This paper will highlight some interesting examples of this technical evolution, including the development of electronic controls and the application of the latest 3D aerodynamic and stress analysis to both compressor and turbine components.


Sign in / Sign up

Export Citation Format

Share Document