scholarly journals Evaluating Thermographic Phosphors in an Operating Turbine Engine

Author(s):  
B. W. Noel ◽  
H. M. Borella ◽  
W. Lewis ◽  
W. D. Turley ◽  
D. L. Beshears ◽  
...  

The results of a field test in a commercial turbine engine showed that we can remotely measure the temperature of engine components in operating engines using thermographic phosphors. The remote-measurement method exploits the temperature dependence of the characteristic decay time of the laser-induced fluorescence of thermographic phosphors. This paper summarizes recent work leading up to and including a successful test of the thermographic-phosphor method in an operating turbine engine.

1991 ◽  
Vol 113 (2) ◽  
pp. 242-245 ◽  
Author(s):  
B. W. Noel ◽  
H. M. Borella ◽  
W. Lewis ◽  
W. D. Turley ◽  
D. L. Beshears ◽  
...  

The results of a field test in a commercial turbine engine showed that we can remotely measure the temperature of engine components in operating engines using thermographic phosphors. The remote-measurement method exploits the temperature dependence of the characteristic decay time of the laser-induced fluorescence of thermographic phosphors. This paper summarizes recent work leading up to and including a successful test of the thermographic-phosphor method in an operating turbine engine.


Author(s):  
Sami Alaruri ◽  
Andy Brewington

A laser-based system for single point high-temperature measurements of turbine engine component surfaces coated with thermographic phosphors is described. Decay lifetime calibration measurements obtained for Y2O3:Eu over the temperature range ∼530–1000°C are presented. Further, the results obtained from a coupon placed in the outlet gas flow of an atmospheric-combustor are described.


Author(s):  
J. R. Dunphy ◽  
W. H. Atkinson

Quantitative diagnostics are essential for use during design optimization studies of turbine engine components to insure that performance goals and lifetime requirements are met. This paper addresses development and testing of sensors for diagnostic application in turbine hot sections. Technologies tested during this investigation included optical fiber static strain sensors, thin metallic film static strain sensors, advanced wire static strain sensors, thermographic phosphor temperature sensors and heat flux sensors. Reference measurements for the strain sensors were provided by speckle photogrammetry and conventional strain gages, while reference measurements for temperature sensor were provided by optical pyrometry and conventional thermocouples. Simulated engine conditions typical of a high pressure turbine disk were provided by operating a disk in a high speed spin–rig which ran to 13200 revolutions per minute and 950 K. Representative results and application issues will be provided for each sensor type.


1992 ◽  
Author(s):  
KIRK D ◽  
ANDREW VAVRECK ◽  
ERIC LITTLE ◽  
LESLIE JOHNSON ◽  
BRETT SAYLOR

Alloy Digest ◽  
2001 ◽  
Vol 50 (8) ◽  

Abstract TIMETAL 829 is a Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si near-alpha titanium alloy that is weldable and has high strength and is a creep resistant high temperature alloy. The major application is as gas turbine engine components. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming and heat treating. Filing Code: TI-118. Producer or source: Timet.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Author(s):  
Jeff W. Bird ◽  
Howard M. Schwartz

This review surveys knowledge needed to develop an improved method of modelling the dynamics of gas turbine performance for fault diagnosis applications. Aerothermodynamic and control models of gas turbine processes are examined as complementary to models derived directly from test data. Extensive, often proprietary data are required for physical models of components, while system identification (SI) methods need data from specially-designed tests. Current methods are limited in: tuning models to test data, non-linear effects, component descriptions in SI models, robustness to noise, and inclusion of control systems and actuators. Conclusions are drawn that SI models could be formulated, with parameters which describe explicitly the functions of key engine components, to offer improved diagnostic capabilities.


Sign in / Sign up

Export Citation Format

Share Document