thin metallic film
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi Jin ◽  
Yu-An Shen ◽  
Yang Zuo ◽  
Y. C. Chan ◽  
S. H. Mannan ◽  
...  

AbstractWith the ever-reducing sizes of electronic devices, the problem of electromigration (EM) has become relevant and requires attention. However, only the EM behavior of Sn–Ag solders within the solder joint structure has been focused on thus far. Therefore, in this study, a thin metallic film composed of Sn–3.5Ag (wt.%) was subjected to a current density of 7.77 × 104 A/cm2 at a temperature of 15 °C to test the ability of existing EM models to predict the nucleation and evolution of voids generated by the resulting atomic migration. A computer simulation was then used to compute the coupled current distribution, thermal distribution, and atomic migration problems. It relied on an original random walk (RW) method, not previously applied to this problem, that is particularly well suited for modelling domains that undergo changes owing to the formation of voids. A comparison of the experimental results and computer simulations proves that the RW method can be applied successfully to this class of problems, but it also shows that imperfections in the film can lead to deviations from predicted patterns.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2035
Author(s):  
Andrzej J. Panas ◽  
Robert Szczepaniak ◽  
Wit Stryczniewicz ◽  
Łukasz Omen

The complex thermophysical property of temperature-sensitive paint (TSP) research is discussed. TSP is used for visualization of the surface temperature distribution in wind tunnel aerodynamic tests. The purpose of this research was to provide reliable, experimental, thermophysical data of the paint applied as a coating. As TSP is applied as thin surface layers, investigation of its final properties is challenging and demands the application of non-standard procedures. At present, most measurements were performed on composite specimens of TSP deposed onto a thin metallic film substrate or on TSP combined with a cellulose sheet support. The studies involved gravimetric,, thermogravimetric, and microcalorimetric analyses, transversal thermal diffusivity estimation from laser flash data and in-plane effective thermal diffusivity measurements done by the temperature oscillation technique. These results were complemented with scanning electron microcopy analysis, surface characterization and the results of dilatometric measurements performed on the TSP bulk specimens obtained from liquid substrate by casting. Complex analysis of the obtained results indicated an isotropic characteristic of the thermal diffusivity of the TSP layer and provided reliable data on all measured thermophysical parameters—they were revealed to be typical for insulators. Further to presenting these data, the paper, in brief, presents the applied investigation procedures.


2021 ◽  
Author(s):  
Angela Camacho de la Rosa ◽  
David Becerril ◽  
Guadalupe Gómez-Farfán ◽  
Raul Esquivel-Sir

Abstract Ultrafast heating processes do not follow Fourier's heat conduction law, but rather the proposed Cattaneo-Vernotte equation (CVe) which has wave-like solutions that have some important differences from other wave phenomenon. In a periodic system made of materials with different thermal conductivities, solutions of the CVe lead to a band-like structure in the dispersion relation. In this work, we show that highly reflective Bragg mirrors for thermal waves can be designed. Even for a mirrors with a few layers a very high reflectance is achieved (>90%). The mirrors are made of materials with large thermal response times, where thermal waves have been measured. A second alternative consists of adding a thin metallic film which also leads to an efficient thermal Bragg mirror. Finally, the role of defects in opening new thermal-stop bands is demonstrated.


2020 ◽  
Vol 39 (1) ◽  
pp. 33-46
Author(s):  
Roberto León ◽  
Werner Nagel ◽  
Joachim Ohser ◽  
Steve Arscott

Random planar tessellations are presented which are generated by subsequent division of their polygonal cells. The purpose is to develop parametric models for crack patterns appearing at length scales which can change by orders of magnitude in areas such as nanotechnology, materials science, soft matter, and geology. Using the STIT tessellation as a reference model and comparing with phenomena in real crack patterns, three modifications of STIT are suggested. For all these models a simulation tool, which also yields several statistics for the tessellation cells, is provided on the web. The software is freely available via a link given in the bibliography of this article. The present paper contains results of a simulation study indicating some essential features of the models. Finally, an example of a real fracture pattern is considered which is obtained using the deposition of a thin metallic film onto an elastomer material – the results of this are compared to the predictions of the model.


Nanophotonics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 2279-2290 ◽  
Author(s):  
Debabrata Sikdar ◽  
Alexei A. Kornyshev

AbstractMirror-on-mirror nanoplasmonic metamaterials, formed on the basis of voltage-controlled reversible self-assembly of sub-wavelength-sized metallic nanoparticles (NPs) on thin metallic film electrodes, are promising candidates for novel electro-tunable optical devices. Here, we present a new design of electro-tunable Fabry–Perot interferometers (FPIs) in which two parallel mirrors – each composed of a monolayer of NPs self-assembled on a thin metallic electrode – form an optical cavity, which is filled with an aqueous solution. The reflectivity of the cavity mirrors can be electrically adjusted, simultaneously or separately, via a small variation of the electrode potentials, which would alter the inter-NP separation in the monolayers. To investigate optical transmittance from the proposed FPI device, we develop a nine-layer-stack theoretical model, based on our effective medium theory and multi-layer Fresnel reflection scheme, which produces excellent match when verified against full-wave simulations. We show that strong plasmonic coupling among silver NPs forming a monolayer on a thin silver-film substrate makes reflectivity of each cavity mirror highly sensitive to the inter-NP separation. Such a design allows the continuous tuning of the multiple narrow and intense transmission peaks emerging from an FPI cavity via electro-tuning the inter-NP separation in situ – reaping the benefits from both inexpensive bottom-up fabrication and energy-efficient tuning.


2018 ◽  
Vol 668 ◽  
pp. 14-22 ◽  
Author(s):  
D. Kozic ◽  
H.-P. Gänser ◽  
R. Brunner ◽  
D. Kiener ◽  
T. Antretter ◽  
...  

Author(s):  
Amir Djalalian-Assl

The influence of the film thickness and the substrate’s refractive index on the surface mode at the superstrate is an important study step that may help clearing some of the misunderstandings surrounding their propagation mechanism. A single sub-wavelength slit perforating a thin metallic film is among the simplest nanostructure capable of launching Surface Plasmon Polaritons on its surrounding surface when excited by an incident field. Here, the impact of the substrate and the film thickness on surface waves is investigated. When the thickness of the film is comparable to its skin depth, SPP waves from the substrate penetrate the film and emerge from the superstrate, creating a superposition of two SPP waves, that leads to a beat interference envelope with well-defined loci which are the function of both the drive frequency and the dielectric constant of the substrate/superstrate. As the film thickness is reduced to the SPP’s penetration depth, surface waves from optically denser dielectric/metal interface would dominate, leading to volume plasmons that propagate inside the film at optical frequencies. Interference of periodic volume charge density with the incident field over the film creates charge bundles that are periodic in space and time.


Author(s):  
Amir Djalalian-Assl

The influence of the film thickness and the substrate’s refractive index on the surface mode at the superstrate is an important study step that may help clearing some of the misunderstandings surrounding their propagation mechanism. A single sub-wavelength slit perforating a thin metallic film is among the simplest nanostructure capable of launching Surface Plasmon Polaritons on its surrounding surface when excited by an incident field. Here, the impact of the substrate and the film thickness on surface waves is investigated. When the thickness of the film is comparable to its skin depth, SPP waves from the substrate penetrate the film and emerge from the superstrate, creating a superposition of two SPP waves, that leads to a beat interference envelope with well defined loci which are the function of both the drive frequency and the dielectric constant of the substrate/superstrate. As the film thickness is reduced to the SPP’s penetration depth, surface waves from optically denser dielectric/metal interface would dominate, leading to volume plasmons that propagate inside the film at optical frequencies. Interference of periodic volume charge density with the incident field over the film creates charge bundles that are periodic in space and time.


Sign in / Sign up

Export Citation Format

Share Document