scholarly journals The Generalized Untwist Problem of Rotating Blades: A Coupled Aeroelastic Formulation

Author(s):  
Gao-Lian Liu

The untwist of rotating blades in turbomachines treated so far in the literatare simply as a pure elasticity problem is generalized and formulated rigorously as a problem of aeroelasticity by variational principles (VPs) and generalized VP (GVP). It takes into account not only the centrifugal force, but also the aeroelastic interaction between blades and the flow as well as the elastic distortion of the cross section shape of blades, assuming the material to be linearly elastic but nonisotropic. Thus, a new rigorous theoretical basis for the finite element analysis of blade untwist in turbomachine design is provided.

2014 ◽  
Vol 1077 ◽  
pp. 215-220
Author(s):  
Hao Liang Guo ◽  
Xi Hui Mu ◽  
Kai Lv ◽  
Feng Po Du

This document mainly studies the cross-section shape of the box-type telescopic boom. First, the basic structure of the telescopic boom was analyzed, and then, the finite element analysis of the quadrilateral and hexagonal telescopic booms were conducted based on ABAQUS with the same section height, width, thickness, as well as the same constraints and loads condition. The stress-strain diagram was obtained. Comparing to the quadrilateral boom, the hexagonal telescopic boom loads higher, weights lighter, and performs better.


2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012047
Author(s):  
Xiaozhu Wang ◽  
Jian Zhang

Abstract In this paper, a new rotating standing wave ultrasonic motor with multiple driving teeth is proposed. Using the method of adding additional teeth, the correction of the B06 surface of the ultrasonic motor vibrator is expected, the design of the optimum position of the drive tooth is realized. At the same time, a method of reducing the stiffness of the rotor is proposed, and the flexibility is met, the integrated design of the rotor and the pressure device can be realized by removing the disc spring. The accuracy of the finite element analysis is verified by the vibration test of the prototype oscillator. The finite element analysis of the main structure parameters of the influence oscillator mode and natural frequency is carried out. It provides theoretical basis for the design and machining of vibration.


Author(s):  
Yongchul Kwon ◽  
Sangsik Kim ◽  
Jonghun Kang

The manufacturing of sound forgings from large steel ingots requires that internal cavity defects generated during the steel ingot solidification process be compressed by open die forging. The forging ratio that is generally recommended to remove internal defects in large forged products is 3S (threefold); however, the practice lacks a theoretical basis. In this study, a forging experiment and a finite element analysis were performed to investigate the correlation between the forging ratio for large steel ingots (3S) and the cavity closure behavior. First, a hot compression experiment was performed by varying the temperature and strain rate, and the flow stress data observed in the experiment was applied to the finite element analysis. In the experiment for the cogging process, the forging ratio was applied to an actual non-compressive defect material. The finite element analysis was performed using the same forging path as the forging experiment. In the cogging experiment, cavity closure was found by ultrasonic inspection at the forging ratio of 2.9S. The finite element analysis showed that the size of the cavity was significantly decreased at the forging ratio of 2.9S. A finite element analysis was also performed to investigate effective strain and hydrostatic stress at the forging ratio of 2.9S. Finally, this article provides the theoretical basis for the limitation of the internal defect size in initial materials, the threshold effective strain, and the limiting forging ratio of forged products to ensure the internal soundness of large forged products.


2011 ◽  
Vol 347-353 ◽  
pp. 1276-1280
Author(s):  
Hong Liang Hu ◽  
Rui Jie Wang ◽  
Chun Ling Meng ◽  
Guo Feng Li

Abstract. Combining characteristic of the Wind Tturbines's rotary support, using finite element method, the paper probe the rotary support finite element analysis of static and modal analysis. Through the static analysis of the rotary support, receiving the deformation and stress-strain results; through modal analysis,receiving the 6-order natural frequency and vibration shape.Analyzing of the main failure forms and Dynamic performance ,the results provide a theoretical basis of improvement of the design and to finalize the program.


2011 ◽  
Vol 311-313 ◽  
pp. 1370-1374
Author(s):  
Ju An Zhang ◽  
Zhi Qiang Guo ◽  
Jin Fa Xie

Based on the tool of the ANSYS Workbench software, the modeling of three-dimensional Entity, meshing and dealing of loads and constraints has been done on the pipelayer’boom. According to the finite element analysis of pipelayer’boom in three basic conditions by the parameter of width, height and thickness, the material consumption of making boom is significantly reduced. All this is done in the premise of ensuring the safety of pipelayer’ boom with the objective of minimizing the quality by the finite element optimization. And the results will be the theoretical basis of the design and improvement of Pipelayer’ boom.


2014 ◽  
Vol 1021 ◽  
pp. 119-122
Author(s):  
Chun Xiu Han ◽  
Dong Hua Zhou ◽  
Yan Hua Yang ◽  
Sheng Jiang Huang

Studying on a cross section column of reinforced concrete special-shaped column frame structure with finite element analysis, mechanical process from loading to destruction is obtained, then fracture mechanism category, node failure destruction mode and deformation mode of the joint core, which provide certain theoretical basis on the property damage type of special-shaped column and cross section design.


2013 ◽  
Vol 438-439 ◽  
pp. 779-783
Author(s):  
Cui Ling Li ◽  
Shu Ying Qu ◽  
Ruo Yang Wu ◽  
Fan Bo Meng

Deflection and stress of different cross section forms and its value are compared by finite element analysis of timberwork design model under the impact loading. The result indicates that decreasing the size of cross section or changing the section shape can effectively avoid the model too heavy and conservative design. In the case of horizontal loads applied on first floor, strengthening the column of first floor obviously reduces the deflection of model and improves the lateral stiffness. Keeping the column size of the first floor and choosing I-section significantly reduce the overall weight on condition of meeting the bearing capacity and stability, it also make the material higher utilization.


2013 ◽  
Vol 395-396 ◽  
pp. 481-484
Author(s):  
Ri Liang Li ◽  
Ya Feng Xu ◽  
Shou Yan Bai

In order to study the force capacity of the cross steel reinforced concrete special-shaped column in horizontal load, the finite element analysis software ABAQUS has been used. We adopt a horizontal direction displacement loading method to apply horizontal load, and its displacement is 20mm. We simulate the stress distribution of the six rates of steel bone and the six different cross section sizes of steel reinforced concrete special-shaped columns. According to the result, the load - displacement curve has been dropped, and we analyze the mechanical properties of cross steel reinforced concrete special-shaped column by the curve. The results show that the bearing capacity of cross steel reinforced concrete special-shaped column has improved with the increasing of rate of steel bone and the cross section size.


Sign in / Sign up

Export Citation Format

Share Document