Conditioned Navier-Stokes and k–ϵ–γ Equations to Model Transition in Pressure Gradient Flow

Author(s):  
J. Steelant ◽  
E. Dick

Conditionally averaged Navier-Stokes equations are derived to describe transitional flow. The averages are taken during the fraction of time the flow is laminar or turbulent, respectively. Conditional averaging leads both for the laminar and turbulent parts to a set of equations for mass, momentum and energy. The conditioned equations differ from the original Navier-Stokes equations by the presence of source terms which are functions of the intermittency factor, γ. This factor is the extra unknown and is determined by a transport equation. The evolution of γ depends mainly on the turbulence level, pressure gradient and Reynolds-number. The turbulence is described by the classical k-ϵ model. The approach is verified against several test cases, with and without pressure gradients.

Author(s):  
J. Steelant ◽  
E. Dick

Conditionally averaged Navier-Stokes equations are used to describe transitional flow in adverse pressure gradient combined with a transport equation for the intermittency factor γ. A transport equation developped in earlier work has been modified to eliminate the use of a distance along a streamline. An extension of the correlations is proposed to determine the spot growth parameter in adverse pressure gradient. This approach is verified against flows over a flat plate with an elliptical leading edge.


2003 ◽  
Vol 125 (2) ◽  
pp. 382-385 ◽  
Author(s):  
S. Tsangaris ◽  
N. W. Vlachakis

The Navier-Stokes equations have been solved in order to obtain an analytical solution of the fully developed laminar flow in a duct having a rectangular cross section with two opposite equally porous walls. We obtained solutions both for the case of steady flow as well as for the case of oscillating pressure gradient flow. The pulsating flow is obtained by the superposition of the steady and oscillating pressure gradient solutions. The solution has applications for blood flow in fiber membranes used for the artificial kidney.


2009 ◽  
Vol 8 (2) ◽  
pp. 92 ◽  
Author(s):  
A. A. Mendiburu ◽  
L. R. Carrocci ◽  
J. A. Carvalho

This paperaims to determine the velocity profile, in transient state, for a parallel incompressible flow known as Couette flow. The Navier-Stokes equations were applied upon this flow. Analytical solutions, based in Fourier series and integral transforms, were obtained for the one-dimensional transient Couette flow, taking into account constant and time-dependent pressure gradients acting on the fluid since the same instant when the plate starts it´s movement. Taking advantage of the orthogonality and superposition properties solutions were foundfor both considered cases. Considering a time-dependent pressure gradient, it was found a general solution for the Couette flow for a particular time function. It was found that the solution for a time-dependent pressure gradient includes the solutions for a zero pressure gradient and for a constant pressure gradient.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


Diagnostics ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Tin-Quoc Nguyen ◽  
Kristoffer Hansen ◽  
Thor Bechsgaard ◽  
Lars Lönn ◽  
Jørgen Jensen ◽  
...  

Invasive catheterization is associated with a low risk of serious complications. However, although it is the gold standard for measuring pressure gradients, it induces changes to blood flow and requires significant resources. Therefore, non-invasive alternatives are urgently needed. Pressure gradients are routinely estimated non-invasively in clinical settings using ultrasound and calculated with the simplified Bernoulli equation, a method with several limitations. A PubMed literature search on validation of non-invasive techniques was conducted, and studies were included if non-invasively estimated pressure gradients were compared with invasively measured pressure gradients in vivo. Pressure gradients were mainly estimated from velocities obtained with Doppler ultrasound or magnetic resonance imaging. Most studies used the simplified Bernoulli equation, but more recent studies have employed the expanded Bernoulli and Navier–Stokes equations. Overall, the studies reported good correlation between non-invasive estimation of pressure gradients and catheterization. Despite having strong correlations, several studies reported the non-invasive techniques to either overestimate or underestimate the invasive measurements, thus questioning the accuracy of the non-invasive methods. In conclusion, more advanced imaging techniques may be needed to overcome the shortcomings of current methods.


1990 ◽  
Vol 220 ◽  
pp. 397-411 ◽  
Author(s):  
Laura L. Pauley ◽  
Parviz Moin ◽  
William C. Reynolds

The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.


Geophysics ◽  
1988 ◽  
Vol 53 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Daniel H. Rothman

Numerical models of fluid flow through porous media can be developed from either microscopic or macroscopic properties. The large‐scale viewpoint is perhaps the most prevalent. Darcy’s law relates the chief macroscopic parameters of interest—flow rate, permeability, viscosity, and pressure gradient—and may be invoked to solve for any of these parameters when the others are known. In practical situations, however, this solution may not be possible. Attention is then typically focused on the estimation of permeability, and numerous numerical methods based on knowledge of the microscopic pore‐space geometry have been proposed. Because the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult, microscopic flow calculations have typically been achieved with idealized arrays of geometrically simple pores, throats, and cracks. I propose here an attractive alternative which can freely and accurately model fluid flow in grossly irregular geometries. This new method solves the Navier‐Stokes equations numerically using the cellular‐automaton fluid model introduced by Frisch, Hasslacher, and Pomeau. The cellular‐ automaton fluid is extraordinarily simple—particles of unit mass traveling with unit velocity reside on a triangular lattice and obey elementary collision rules—but is capable of modeling much of the rich complexity of real fluid flow. Cellular‐automaton fluids are applicable to the study of porous media. In particular, numerical methods can be used to apply the appropriate boundary conditions, create a pressure gradient, and measure the permeability. Scale of the cellular‐automaton lattice is an important issue; the linear dimension of a void region must be approximately twice the mean free path of a lattice gas particle. Finally, an example of flow in a 2-D porous medium demonstrates not only the numerical solution of the Navier‐Stokes equations in a highly irregular geometry, but also numerical estimation of permeability and a verification of Darcy’s law.


Sign in / Sign up

Export Citation Format

Share Document