Exact Solution of the Navier-Stokes Equations for the Fully Developed, Pulsating Flow in a Rectangular Duct With a Constant Cross-Sectional Velocity1

2003 ◽  
Vol 125 (2) ◽  
pp. 382-385 ◽  
Author(s):  
S. Tsangaris ◽  
N. W. Vlachakis

The Navier-Stokes equations have been solved in order to obtain an analytical solution of the fully developed laminar flow in a duct having a rectangular cross section with two opposite equally porous walls. We obtained solutions both for the case of steady flow as well as for the case of oscillating pressure gradient flow. The pulsating flow is obtained by the superposition of the steady and oscillating pressure gradient solutions. The solution has applications for blood flow in fiber membranes used for the artificial kidney.

Author(s):  
J. Steelant ◽  
E. Dick

Conditionally averaged Navier-Stokes equations are used to describe transitional flow in adverse pressure gradient combined with a transport equation for the intermittency factor γ. A transport equation developped in earlier work has been modified to eliminate the use of a distance along a streamline. An extension of the correlations is proposed to determine the spot growth parameter in adverse pressure gradient. This approach is verified against flows over a flat plate with an elliptical leading edge.


Author(s):  
J. Steelant ◽  
E. Dick

Conditionally averaged Navier-Stokes equations are derived to describe transitional flow. The averages are taken during the fraction of time the flow is laminar or turbulent, respectively. Conditional averaging leads both for the laminar and turbulent parts to a set of equations for mass, momentum and energy. The conditioned equations differ from the original Navier-Stokes equations by the presence of source terms which are functions of the intermittency factor, γ. This factor is the extra unknown and is determined by a transport equation. The evolution of γ depends mainly on the turbulence level, pressure gradient and Reynolds-number. The turbulence is described by the classical k-ϵ model. The approach is verified against several test cases, with and without pressure gradients.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


2017 ◽  
Vol 12 (1) ◽  
pp. 43-49
Author(s):  
Egor Palkin ◽  
Rustam Mullyadzhanov

Flows between two closely spaced bounding surfaces are frequently appear in engineering applications and natural flows. In current paper the flow over a cylinder in a narrow rectangular duct was investigated by numerical computations of Navier-Stokes equations using Large eddy simulations (LES) at ReD = 3 750 based on cylinder diameter and the bulk velocity at inflow boundary. The influence of the bounding walls was demonstrated by comparing mean flow streamlines with the flow over an infinite cylinder at close Reynolds numbers. A comparison between the time-averaged velocity field in front and past the cylinder with experimental from the literature data showed good agreement although the characteristic horseshoe vortex structures are highly sensitive to Reynolds number and turbulence level at inflow boundary. Most energetic modes in recirculating region were revealed by spectral analysis. These low-frequency modulations were characterized by the pair of dominating vortices which are expected to have high influence on the heat transfer in near wake of the cylinder.


Author(s):  
Hua Chen ◽  
Strong Guo ◽  
Xiao-Cheng Zhu ◽  
Zhao-Hui Du ◽  
Stone Zhao

In a previous publication (Guo & Chen et al., 2007), the authors solved the unsteady, 3-D Navier-Stokes equations with the k-ε turbulence model using CFX software to show that there is a volute stall coincided with the stage stall of a turbocharger centrifugal compressor operated at 423m/s tip speed and the stage stall frequency is dictated by a volute standing wave. This paper presents the flow condition at the vaneless diffuser and volute from the same simulation at various mass flow rates from stage peak efficiency to deep stage stall. Time averaged flow conditions show that (1) the influence of exducer blade passing at the volute inlet rapidly diminishes at the compressor peak pressure ratio point and the influence vanishes when the stage is in stall; (2) only at the peak pressure ratio point, circumferentially averaged, spanwise distribution of radial velocity at the volute inlet has an inflection point and the distribution meets the requirement of the Fjo̸rtoft instability theorem; (3) in the volute discharge section, the flow stalls after the stage stalls and the vortex core at the cross sectional center of the section breaks down; (4) impeller total pressure rise curve has a flat region in the middle before the stage stalls and (5) diffuser stall triggers the stage stall and drives the volute into stall.


1990 ◽  
Vol 220 ◽  
pp. 397-411 ◽  
Author(s):  
Laura L. Pauley ◽  
Parviz Moin ◽  
William C. Reynolds

The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.


Geophysics ◽  
1988 ◽  
Vol 53 (4) ◽  
pp. 509-518 ◽  
Author(s):  
Daniel H. Rothman

Numerical models of fluid flow through porous media can be developed from either microscopic or macroscopic properties. The large‐scale viewpoint is perhaps the most prevalent. Darcy’s law relates the chief macroscopic parameters of interest—flow rate, permeability, viscosity, and pressure gradient—and may be invoked to solve for any of these parameters when the others are known. In practical situations, however, this solution may not be possible. Attention is then typically focused on the estimation of permeability, and numerous numerical methods based on knowledge of the microscopic pore‐space geometry have been proposed. Because the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult, microscopic flow calculations have typically been achieved with idealized arrays of geometrically simple pores, throats, and cracks. I propose here an attractive alternative which can freely and accurately model fluid flow in grossly irregular geometries. This new method solves the Navier‐Stokes equations numerically using the cellular‐automaton fluid model introduced by Frisch, Hasslacher, and Pomeau. The cellular‐ automaton fluid is extraordinarily simple—particles of unit mass traveling with unit velocity reside on a triangular lattice and obey elementary collision rules—but is capable of modeling much of the rich complexity of real fluid flow. Cellular‐automaton fluids are applicable to the study of porous media. In particular, numerical methods can be used to apply the appropriate boundary conditions, create a pressure gradient, and measure the permeability. Scale of the cellular‐automaton lattice is an important issue; the linear dimension of a void region must be approximately twice the mean free path of a lattice gas particle. Finally, an example of flow in a 2-D porous medium demonstrates not only the numerical solution of the Navier‐Stokes equations in a highly irregular geometry, but also numerical estimation of permeability and a verification of Darcy’s law.


2014 ◽  
Vol 761 ◽  
pp. 241-260 ◽  
Author(s):  
G. Daschiel ◽  
V. Krieger ◽  
J. Jovanović ◽  
A. Delgado

AbstractThe development of incompressible turbulent flow through a pipe of wavy cross-section was studied numerically by direct integration of the Navier–Stokes equations. Simulations were performed at Reynolds numbers of $4.5\times 10^{3}$ and $10^{4}$ based on the hydraulic diameter and the bulk velocity. Results for the pressure resistance coefficient ${\it\lambda}$ were found to be in excellent agreement with experimental data of Schiller (Z. Angew. Math. Mech., vol. 3, 1922, pp. 2–13). Of particular interest is the decrease in ${\it\lambda}$ below the level predicted from the Blasius correlation, which fits almost all experimental results for pipes and ducts of complex cross-sectional geometries. Simulation databases were used to evaluate turbulence anisotropy and provide insights into structural changes of turbulence leading to flow relaminarization. Anisotropy-invariant mapping of turbulence confirmed that suppression of turbulence is due to statistical axisymmetry in the turbulent stresses.


Sign in / Sign up

Export Citation Format

Share Document