Research on Path Optimization Technology for Free-Form Surface Five-Axis NC Machining

2012 ◽  
Vol 443-444 ◽  
pp. 202-208 ◽  
Author(s):  
Shu Kun Cao ◽  
Li Song ◽  
Ke Dong ◽  
Kai Feng Song ◽  
Zhi Ming Sui

In view of all sorts of questions existing in CNC machining, such as machining vibration, so proposed a new method of free-form surface NC machining path optimization based on constant scallop height. This method first discrete surface boundary into the knife touch point based on the maximum tolerance, then in accordance with the maximum allowable scallop height generates circular trajectory with the same scallop, and finally connects adjacent curve path using the diagonal to achieve a continuous cutting scallop height tool path. This method can reduce the number of tools cut in and out parts, reduce the processing vibration and tool wear, and the surface processed has the same precision. This method has simple calculation, suitable for free-form surface of CNC highspeed and precision machining.

Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.


2013 ◽  
Vol 385-386 ◽  
pp. 726-730
Author(s):  
Ren Xian Geng ◽  
Hou Jun Qi ◽  
Xin Pan ◽  
Zhi Gang Liu

Using five-axis equipment for NC machining of free-form surface is an effective way to improve machining quality and machining efficiency, the surface shape and the five coordinate of the complexity of the machine tool movement led to its tool path planning technology is difficult. The paper aimed at the five coordinate NC machining of free-form surface and puts forward a five-axis NC machining method based on triangular facet model. The research based on triangular facet model, using constant scallop height method to calculate the step distance and improve the cutting efficiency to a great extent. In the process, tool path is generated, combining with the method of configuration space interference free.


2011 ◽  
Vol 467-469 ◽  
pp. 900-905
Author(s):  
Shu Kun Cao ◽  
Li Song ◽  
Kai Feng Song ◽  
Jie Lv ◽  
Xiu Sheng Chen

In view of all sorts of questions existing in CNC machining, such as machining vibration, so proposed a new simultaneous multi-objective optimization algorithm on free-form surface five-axis machining tool path and tool posture based on constant scallop height. In the algorithm, we first complete the surface fitting on the base of feature points obtained. Secondly calculate principal curvatures of the surface, select tools, and at the same time generate tool axis vector in the current cutter-contact point tool axis. Once again get the maximum spacing and surface curvature in accordance with the tool effective cutting radius, discrete into cutter-contact point, and calculate the cutting depth to adjust the machine feed rate. And finally connect adjacent curve path using the diagonal to achieve a continuous cutting scallop height tool path. This algorithm can achieve the goals such as the same precision, improving processing efficiency, reducing the number of tool cutting in and out, reducing cutting vibration and tool wear and so on. That is the algorithm can achieve simultaneous multi-objective optimization of the free-form surface NC machining finally.


2011 ◽  
Vol 55-57 ◽  
pp. 1932-1937
Author(s):  
Li Song ◽  
Shu Kun Cao ◽  
Kai Feng Song ◽  
Chang Zhong Wu ◽  
Wei Wei Song

The paper presented the development of free-form surface axis NC machining tool path optimization module. In the UG environment, have three-dimensional solid modeling to the surface, and then have the secondary development of free-form surfaces five-axis machining path optimization module through the UG/Open API and VC++6.0. This can realize NC processing path automatically generation and optimization after the three-dimensional modeling. Introduction


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


2015 ◽  
Vol 799-800 ◽  
pp. 1193-1196 ◽  
Author(s):  
Shu Kun Cao ◽  
Yong Hong Deng ◽  
Kun Zhang ◽  
Shi Ping Liu ◽  
Wen Jing Meng

In order to solve the problem of free surface processing of tool redundancy,the tool lack problem, and the demerit of low machining efficiency, etc., based on the iso-scallop method, based on the iso-scallop method, we put forward a kind of free surface NC machining tool path optimization algorithm,make the surface boundary discrete point set, which is generated by point set ring machining path, diagonal connection and then use the path of the adjacent curve, forming cutting tool machining line.finally, the calculation of step size and line spacing in machining path based on the iso-scallop method and the process of feeding direction is optimized. Proved by the simulation process, the algorithm is feasible and can effectively avoid tool redundancy and tool lack problems,concesquently, processing efficiency improved significantly.


2011 ◽  
Vol 215 ◽  
pp. 176-181
Author(s):  
Li Min ◽  
Ke Hua Zhang

A new tool path generation method based on cutter shaft tilt method was proposed for free-form surface machining by using Ball-end Cutter. Firstly, it introduces the processing quality problems caused by traditional ball-end mill processing. Then cutter shaft tilt was proposed to avoid the above questions. Analyzing the different machining efficiency at the different angle, and then cutter shaft tilt compensation method which based on above method could avoid that problem was proposed. After the paths calculation to a real surface and simulation, the result shows that, comparing to traditional machining method, the new method reduced efficiently phenomenon of extruding and scratching surface. It meets five-axis processing accuracy requirements.


CIRP Annals ◽  
2009 ◽  
Vol 58 (1) ◽  
pp. 101-104 ◽  
Author(s):  
I. Lazoglu ◽  
C. Manav ◽  
Y. Murtezaoglu

2010 ◽  
Vol 29-32 ◽  
pp. 430-435
Author(s):  
Li Qiang Zhang ◽  
Ye Cui Yan

This paper presents process optimization for the five-axis milling based on the mechanics model explained in Part I. The process is optimized by varying the feed as the tool-workpiece engagements. The linear and angular feedrates are optimized by sequential quadratic programming. Sharp feedrate changes may result in undesired feed-marks on the finished surface. The adopted step is to update the the original CL file with optimized and filtered feedrate commands. The five-axis milling process is simulated in a virtual enviroment, and the resulting feedrate outputs are stored at each position along the tool path. The new feedrate profiles are shown to considerably reduce the machining time while avoiding process faults.


2005 ◽  
Vol 127 (1) ◽  
pp. 60-67 ◽  
Author(s):  
O. Remus Tutunea-Fatan ◽  
Hsi-Yung Feng

Five-axis computer numerical control (CNC) machining is characterized with a multitude of errors. Among them an important component comes from the computer-aided manufacturing software known as the geometry-based errors. A new and accurate method to determine these errors is presented in this paper as opposed to the conventional chordal deviation method. The present method allows establishing the exact linearly interpolated tool positions between two cutter contact points on a given tool path, based on the inverse kinematics analysis of the machine tool. A generic procedure has been developed to ensure wide applicability of the proposed method. Analytical derivation of the geometry-based errors provides insights regarding the origin of these errors and their affecting parameters. Due to the highly non-linear characteristics of the problem, analytical solutions can only be obtained for simple surface geometry. Numerical computation is able to determine the errors for general surface shapes but it would be difficult to uncover further insightful information from the calculated error values. Besides the local surface geometry, the configuration of the kinematic chain of the CNC machine has been found to be the primary factor controlling the resulting value and type of the geometry-based errors. Implementations with a typical complex free-form surface demonstrated that the conventional chordal deviation method was not reliable and could significantly underestimate the geometry-based errors.


Sign in / Sign up

Export Citation Format

Share Document