IGV-Rotor Interaction Analysis in a Transonic Compressor Using the Navier-Stokes Equations

Author(s):  
Andrea Arnone ◽  
Roberto Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to handle quasi-three-dimensional effects and applied to the first stage of a modern transonic compressor. Interest is focused on the inlet guide vane (IGV):rotor interaction where strong sources of unsteadiness are to be expected. Several calculations have been performed to predict the stage operating characteristics. Flow structures at various mass flow rates, from choke to near stall, are presented and discussed. Comparisons between unsteady and steady pitch-averaged results are also included in order to obtain indications about the capabilities of steady, multi-row analyses.

1998 ◽  
Vol 120 (1) ◽  
pp. 147-155 ◽  
Author(s):  
A. Arnone ◽  
R. Pacciani

A recently developed, time-accurate multigrid viscous solver has been extended to handle quasi-three-dimensional effects and applied to the first stage of a modern transonic compressor. Interest is focused on the inlet guide vane (IGV)-rotor interaction where strong sources of unsteadiness are to be expected. Several calculations have been performed to predict the stage operating characteristics. Flow structures at various mass flow rates, from choke to near stall, are presented and discussed. Comparisons between unsteady and steady pitch-averaged results are also included in order to obtain indications about the capabilities of steady, multi-row analyses.


Author(s):  
W. N. Dawes

This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodolgy. The fully three dimensional, compressible, Reynolds averaged Navier-Stokes equations with k-ε turbulence modelling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.


1992 ◽  
Vol 114 (3) ◽  
pp. 528-537 ◽  
Author(s):  
W. N. Dawes

This paper presents a numerical method for the simulation of flow in turbomachinery blade rows using a solution-adaptive mesh methodology. The fully three-dimensional, compressible, Reynolds-averaged Navier–Stokes equations with k–ε turbulence modeling (and low Reynolds number damping terms) are solved on an unstructured mesh formed from tetrahedral finite volumes. At stages in the solution, mesh refinement is carried out based on flagging cell faces with either a fractional variation of a chosen variable (like Mach number) greater than a given threshold or with a mean value of the chosen variable within a given range. Several solutions are presented, including that for the highly three-dimensional flow associated with the corner stall and secondary flow in a transonic compressor cascade, to demonstrate the potential of the new method.


Author(s):  
J. M. Fougères ◽  
R. Helder

Three-dimensional Navier-Stokes calculations have been performed on various geometries in the presence of discrete-hole injection. The quality of the aerodynamic and thermal predictions of the flow is assessed by comparison to experiments. The code used for the calculations is developed at ONERA and has previously been presented by various authors (Billonnet et al., 1992). It solves the unsteady set of three-dimensional Navier-Stokes equations, completed by a mixing-length turbulence model, using a finite volume technique. The multi-domain approach of the code has facilitated the treatment of this type of geometry. The injection holes are discretized on cylindrical subdomains which overlap the mesh of the main flow. Two applications of the code are presented in this paper. First, a calculation was performed on a row of hot jets injected into a flat plate turbulent boundary layer. Secondly, the code was tested on a plane nozzle guide vane grid with multiple injections. Heat transfer rates, temperature and velocity profiles are compared to experimental data.


1992 ◽  
Vol 114 (1) ◽  
pp. 1-7 ◽  
Author(s):  
K. C. Karki ◽  
V. L. Oechsle ◽  
H. C. Mongia

This paper describes a diffuser-combustor flow interaction analysis procedure for gas turbine combustion systems. The method is based on the solution of the Navier–Stokes equations in a generalized nonorthogonal coordinate system. The turbulence effects are modeled via the standard two-equation (k-ε) model. The method has been applied to a practical gas turbine combustor-diffuser system that includes support struts and fuel nozzles. Results have been presented for a three-dimensional simulation, as well as for a simplified axisymmetric simulation. The flow exhibits significant three-dimensional behavior. The axisymmetric simulation is shown to predict the static pressure recovery and the total pressure losses reasonably well.


Author(s):  
K. C. Karki ◽  
V. L. Oechsle ◽  
H. C. Mongia

This paper describes a diffuser-combustor flow interaction analysis procedure for gas turbine combustion systems. The method is based on the solution of the Navier-Stokes equations in a generalized non-orthogonal coordinate system. The turbulence effects are modeled via the standard two-equation (k-ε) model. The method has been applied to a practical gas turbine combustor-diffuser system that includes support struts and fuel nozzles. Results have been presented for a three-dimensional simulation, as well as for a simplified axisymmetric simulation. The flow exhibits significant three-dimensional behavior. The axisymmetric simulation is shown to predict the static pressure recovery and the total pressure losses reasonably well.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Sign in / Sign up

Export Citation Format

Share Document