scholarly journals Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments

Author(s):  
Karren L. More ◽  
Peter F. Tortorelli ◽  
Mattison K. Ferber ◽  
Larry R. Walker ◽  
James R. Keiser ◽  
...  

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204°C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

2000 ◽  
Vol 122 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Karren L. More ◽  
Peter F. Tortorelli ◽  
Mattison K. Ferber ◽  
Larry R. Walker ◽  
James R. Keiser ◽  
...  

A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204°C, and 15 percent steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions. [S0742-4795(00)02402-9]


2009 ◽  
Vol 01 (03n04) ◽  
pp. 433-450
Author(s):  
A. C. F. COCKS ◽  
F. A. LECKIE

Ceramic matrix composites (CMCs) are candidates for pressurized tubes which operate under conditions of severe cyclic thermal loading. Simple models describing the properties of CMCs are used to estimate the behaviour of a pressurized tube subjected to cyclic thermal loading and to establish shakedown and failure conditions. Analytical procedures are described which evaluate the component response in the cyclic state. The approach is illustrated by analysing the classical Bree problem assuming material properties which are representative of a SiC/SiC composite. Performance diagrams are presented which identify safe operating conditions and the extent of damage in the component.


Author(s):  
Andy Szweda ◽  
Steve Butner ◽  
John Ruffoni ◽  
Carlos Bacalski ◽  
Jay Lane ◽  
...  

Oxide/Oxide Ceramic Matrix Composites (CMCs) are an attractive class of materials for gas turbine hot section applications. The oxide fiber reinforcement and inherent matrix porosity contributes to favorable fracture toughness and thereby enhanced resistance against impact by foreign objects. Also, the oxide composition ensures superior environmental resistance against accelerated attack by corrosive species in the gas turbine hot section and resulting surface recession typically observed in silicon-based ceramic monolithic and composite materials. Under a program sponsored by the US National Institute of Standards and Technology (NIST) a hybrid oxide/oxide CMC system has been developed with potential application for stationary gas turbine hot section components. COI Ceramics, Inc. has fabricated subscale and full scale combustor liners which have been evaluated in rig and engine testing at Solar, and in field testing in a Solar Centaur® 50S engine at a commercial end user site. Following the conclusion of the NIST program in June 2003 the engine field testing is being continued under a Solar-led program sponsored by the US Dept. of Energy (DOE). As of November 2004, a hybrid oxide/oxide CMC outer combustor liner has accumulated 12,582 field test hours with 63 starts and an extensive material experience base has been developed. The paper will summarize the progress to-date for this hybrid CMC combustor liner development and demonstration, including selected fabrication approach, NDE, and rig/engine test experience.


2020 ◽  
Vol 299 ◽  
pp. 37-42
Author(s):  
O.A. Fomina ◽  
Andrey Yu. Stolboushkin

A model of the transition layer between the shell and the core of a ceramic matrix composite from coal waste and clay has been developed. The chemical, granulometric and mineral compositions of the beneficiation of carbonaceous mudstones and clay were studied. The technological and ceramic properties of raw materials for the samples manufacturing were determined. The method of manufacturing multilayer ceramic samples from coal waste, clay and their mixture is given. The number of transition layers in the contact zone between the clay shell and the core from coal wastes is determined. The deformation and swelling phenomena of model samples from coal wastes, clay, and their mixtures were revealed at the firing temperature of more than 1000 °C. The formation of a reducing ambient in the center of the sample with insufficient air flow is shown. The influence of the carbonaceous particles amount and the ferrous form iron oxide in the coal wastes on the processes of expansion of multilayer samples during firing has been established.


Author(s):  
Michael J. Walock ◽  
Vann Heng ◽  
Andy Nieto ◽  
Anindya Ghoshal ◽  
Muthuvel Murugan ◽  
...  

Future gas turbine engines will operate at significantly higher temperatures (∼1800 °C) than current engines (∼1400 °C) for improved efficiency and power density. As a result, the current set of metallic components (titanium-based and nickel-based superalloys) will be replaced with ceramics and ceramic matrix composites (CMCs). These materials can survive the higher operating temperatures of future engines at significant weight savings over the current metallic components, i.e., advanced ceramic components will facilitate more powerful engines. While oxide-based CMCs may not be suitable candidates for hot-section components, they may be suitable for structural and/or exhaust components. However, a more thorough understanding of the performance under relevant environment of these materials is needed. To this end, this work investigates the high-temperature durability of a family of oxide–oxide CMCs (Ox–Ox CMCs) under an engine-relevant environment. Flat Ox–Ox CMC panels were cyclically exposed to temperatures up to 1150 °C, within 240 m/s (∼0.3 M) gas flows and hot sand impingement. Front and backside surface temperatures were monitored by a single-wavelength (SW) pyrometer and thermocouple, respectively. In addition, an infrared (IR) camera was used to evaluate the damage evolution of the samples during testing. Flash thermography nondestructive evaluation (NDE) was used to elucidate defects present before and after thermal exposure.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Hye-gyu Kim ◽  
Wooseok Ji ◽  
Nam Choon Cho ◽  
Jong Kyoo Park

Microstructural fracture behavior of a ceramic matrix composite (CMC) with nonuniformly distributed fibers is studied in the presentation. A comprehensive numerical analysis package to study the effect of nonuniform fiber dimensions and locations on the microstructural fracture behavior is developed. The package starts with an optimization algorithm for generating representative volume element (RVE) models that are statistically equivalent to experimental measurements. Experimentally measured statistical data are used as constraints while the optimization algorithm is running. Virtual springs are utilized between any adjacent fibers to nonuniformly distribute the coated fibers in the RVE model. The virtual spring with the optimization algorithm can efficiently generate multiple RVEs that are statistically identical to each other. Smeared crack approach (SCA) is implemented to consider the fracture behavior of the CMC material in a mesh-objective manner. The RVEs are subjected to tension as well as the shear loading conditions. SCA is capable of predicting different fracture patterns, uniquely defined by not only the fiber arrangement but also the specific loading type. In addition, global stress-strain curves show that the microstructural fracture behavior of the RVEs is highly dependent on the fiber distributions.


Author(s):  
M. J. Presby ◽  
C. Gong ◽  
S. Kane ◽  
N. Kedir ◽  
A. Stanley ◽  
...  

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2-D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to kinetic energy of impacting particles in conjunction with nominal density, matrix hardness and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.


2004 ◽  
Vol 177 (2) ◽  
pp. 449-456 ◽  
Author(s):  
R Naslain ◽  
A Guette ◽  
F Rebillat ◽  
R Pailler ◽  
F Langlais ◽  
...  

2011 ◽  
Vol 78 (3) ◽  
Author(s):  
M. Blacklock ◽  
D. R. Hayhurst

This paper considers the multi-axial stress-strain-failure response of two commercially woven ceramic matrix composites. The different failure mechanisms of uni-axially stressed tows and woven composites are addressed. A model is postulated in which the local transverse and shear stressing, arising from the weave, instantaneously deactivate wake debonding and fiber pullout and initiates dynamic fiber failure; hence, triggering catastrophic failure of the axially stressed region of the tow. The model is shown to predict experimentally measured stress-strain-failure results for the woven composites considered. Simple stress-strain-failure models are also proposed for tows subjected to axial-transverse and axial-shear loadings, but due to the lack of experimental data they have not been validated.


Sign in / Sign up

Export Citation Format

Share Document