scholarly journals Development of the WR-21 Gas Turbine Recuperator

Author(s):  
Robert C. Sanders ◽  
George C. Louie

WR-21 is an intercooled and recuperated (ICR) gas turbine engine being developed by the U. S. Navy (USN) with contributions from the Royal Navy and the French Navy. A key component of the WR-21 engine is the recuperator used to recover waste heat from engine exhaust gas. The recuperator is being designed and fabricated by AlliedSignal Aerospace Company under subcontract to Northrop Grumman Marine Services, the prime contractor for the WR-21 gas turbine engine. One of the most challenging developmental items for the WR-21 engine has proven to be the recuperator. This paper discusses the development of the recuperator, including the advanced development (AD) recuperator which failed after a few hours of operation, the limited operating unit (LOU) recuperator which has supported much of the WR-21 engine development testing and the engineering development model (EDM) recuperator which will be used for a 3000 hour engine endurance test. Included is an overview of USN technical requirements for the recuperator and a review of operating experience with the AD and LOU recuperators. Failure modes that have been experienced are discussed in detail, including root cause evaluations and design modifications. Steps taken to extend the life of the LOU recuperator are discussed. In addition, testing (both single core and full size recuperator) and analytical models that have been used to improve the design and reliability of the recuperator are addressed.

Author(s):  
J. A. Saintsbury ◽  
P. Sampath

The impact of potential aviation gas turbine fuels available in the near to midterm, is reviewed with particular reference to the small aviation gas turbine engine. The future course of gas turbine combustion R&D, and the probable need for compromise in fuels and engine technology, is also discussed. Operating experience to date on Pratt & Whitney Aircraft of Canada PT6 engines, with fuels not currently considered of aviation quality, is reported.


Author(s):  
Andrew Banta

California State University, Sacramento, has constructed and put into service a stand alone cogeneration laboratory. The major components are a 75 kW gas turbine and generator, a waste heat boiler, and a 10 ton absorption chiller. Initial testing has been completed with efforts concentrating on the gas turbine engine and the absorption chiller. A two part thermodynamic performance analysis procedure has been developed to analyze the cogeneration plant. A first law energy balance around the gas turbine determines the heat into the engine. A Brayton cycle analysis of the gas turbine engine is then compared with the measured performance. While this engine is quite small, this method of analysis gives very consistent results and can be applied to engines of all sizes. Careful attention to details is required to obtain agreement between the calculated and measured outputs; typically they are within 10 to 15 percent. In the second part of the performance analysis experimental operation of the absorption chiller has been compared to that specified by the manufacturer and a theoretical cycle analysis. While the operation is within a few percent of that specified by the manufacturer, there are some interesting differences when it is compared to a theoretical analysis.


Author(s):  
Delfim Dores ◽  
Maria Madruga Santos ◽  
Anjaneyulu Krothapalli ◽  
Luiz Lourenco ◽  
Emmanuel Collins ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 730-738 ◽  
Author(s):  
Raul Otero ◽  
K. Todd Lowe ◽  
Wing F. Ng ◽  
Lin Ma ◽  
Chu-Young Kim

Author(s):  
Michael P. Enright ◽  
R. Craig McClung

Some rotor-grade gas turbine engine materials may contain multiple types of anomalies such as voids and inclusions that can be introduced during the manufacturing process. The number and size of anomalies can be very different for the various anomaly types, each of which may lead to premature fracture. The probability of failure of a component with multiple anomaly types can be predicted using established system reliability methods provided that the failure probabilities associated with individual anomaly types are known. Unfortunately, these failure probabilities are often difficult to obtain in practice. In this paper, an approach is presented that provides treatment for engine materials with multiple anomalies of multiple types. It is based on a previous work that has been extended to address the overlap among anomaly type failure modes using the method of Kaplan–Meier and is illustrated for risk prediction of a nickel-based superalloy. The results can be used to predict the risk of general materials with multiple types of anomalies.


Author(s):  
Michael P. Enright ◽  
R. Craig McClung

Some rotor-grade gas turbine engine materials may contain multiple types of anomalies such as voids and inclusions that can be introduced during the manufacturing process. The number and size of anomalies can be very different for the various anomaly types, each of which may lead to premature fracture. The probability of failure of a component with multiple anomaly types can be predicted using established system reliability methods provided that the failure probabilities associated with individual anomaly types are known. Unfortunately, these failure probabilities are often difficult to obtain in practice. In this paper, an approach is presented that provides treatment for engine materials with multiple anomalies of multiple types. It is based on previous work that has extended to address the overlap among anomaly type failure modes using the method of Kaplan-Meier, and is illustrated for risk prediction of a nickel-based superalloy. The results can be used to predict the risk of general materials with multiple types of anomalies.


Sign in / Sign up

Export Citation Format

Share Document