An Investigation on the Issues in Modelling of Free Flight in Animal Locomotion

Author(s):  
Masateru Maeda ◽  
Toshiyuki Nakata ◽  
Hao Liu

Aiming at establishing an effective computational framework to accurately predict free-flying dynamics and aerodynamics we here present a comprehensive investigation on some issues associated with the modelling of free flight. Free flight modelling/simulation is essential for some types of flights e.g. falling leaves or auto-rotating seeds for plants; unsteady manoeuvres such as take-off, turning, or landing for animals. In addition to acquiring the deeper understanding of the flight biomechanics of those natural organisms, revealing the sophisticated aerodynamic force generation mechanisms employed by them may be useful in designing man-made flying-machines such as rotary or flapping micro air vehicles (MAVs). The simulations have been conducted using the coupling of computational fluid dynamics (CFD) and rigid body dynamics, thus achieving the free flight. The flow field is computed with a three-dimensional unsteady incompressible Navier-Stokes solver using pseudo-compressibility and overset gird technique. The aerodynamic forces acting on the flyer are calculated by integrating the forces on the surfaces. Similarly, the aerodynamic torque around the flyer’s centre of mass is obtained. The forces and moments are then introduced into a six degrees-of-freedom rigid body dynamics solver which utilises unit quaternions for attitude description in order to avoid singular attitude. Results are presented of a single body model and some insect-like multi-body models with flapping wings, which point to the importance of free-flight modelling in systematic analyses of flying aerodynamics and manoeuvrability. Furthermore, a comprehensive investigation indicates that the framework is capable to predict the aerodynamic performance of free-flying or even free-swimming animals in an intermediate range of Reynolds numbers (< 105).

Author(s):  
Justin P. Fisk ◽  
Jennifer S. Wayne

Musculoskeletal computational modeling can be a powerful and useful tool to study joint behavior, examine muscle and ligament function, measure joint contact pressures, simulate injury, and analyze the biomechanical results of reconstructive procedures. Commonly, biomechanical models are based on either finite element analysis (FEA) or three-dimensional rigid body dynamics. While each approach has advantages for specific applications, rigid body dynamics algorithms are highly efficient [1], thus significantly reducing solution time. Many musculoskeletal models of the elbow have been developed [2, 3], but all have constrained the articulations to have particular degrees of freedom and ignored the effects of ligaments. An accurate and robust model without these limitations has potential as a clinical tool to predict the outcome of injuries and/or surgical procedures. This work develops and validates an accurate computational model of the elbow joint whereby joint kinematics are dictated by three-dimensional bony geometry contact, ligamentous constraints, and muscle loading.


2004 ◽  
Vol 126 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Ravishankar Shivarama ◽  
Eric P. Fahrenthold

A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.


2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Katica R. (Stevanović) Hedrih ◽  
Ljiljana Veljović

Vector method based on mass moment vectors and vector rotators coupled for pole and oriented axes is used for obtaining vector expressions for kinetic pressures on the shaft bearings of a rigid body dynamics with coupled rotations around axes without intersection. Mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis are defined by K. Hedrih in 1991. These kinematical vectors rotators are defined for a system with two degrees of freedom as well as for rheonomic system with two degrees of mobility and one degree of freedom and coupled rotations around two coupled axes without intersection as well as their angular velocities and intensity. As an example of defined dynamics, we take into consideration a heavy gyrorotor disk with one degree of freedom and coupled rotations when one component of rotation is programmed by constant angular velocity. For this system with nonlinear dynamics, a series of tree parametric transformations of system nonlinear dynamics are presented. Some graphical visualization of vector rotators properties are presented too.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Wen-Hong Zhu

A systematic approach for deriving the dynamical expression of general constrained robots is developed in this paper. This approach uses rigid-body dynamics and two kinematics-based mapping matrices to form the dynamics of complex robots in closed form. This feature enables the developed modeling approach to be rigorous in nature, since every actuator and gear-head can be separated into rigid bodies and no assumption about approximation beyond rigid-body dynamics is made. The two kinematics-based mapping matrices are used to govern the velocity and force transformations among three configuration spaces, namely, general joint space, general task space, and extended subsystems space. Consequently, the derived dynamics of general constrained robots maintain the same form and main properties as the conventional single-arm constrained robots. This approach is particularly useful for robots with hyper degrees of freedom. Five examples are given.


2013 ◽  
Vol 80 (4) ◽  
Author(s):  
Homin Choi ◽  
Bingen Yang

Although quaternions are singularity-free in modeling and analysis of rigid bodies in three-dimensional motion, description of torques may lead to unbounded response of a quaternion-based model. This paper gives theorems on the conditions of torque-induced singularity in four coordinate systems: inertial frame, body frame, Euler basis, and dual Euler basis. According to the theorems, torques applied in an inertial frame or a body frame or a Euler basis will never cause unbounded motion; torques applied in a dual Euler basis, however, may lead to unbounded motion.


Sign in / Sign up

Export Citation Format

Share Document