Sailing yacht performance prediction based on coupled CFD and rigid body dynamics in 6 degrees of freedom

2017 ◽  
Vol 144 ◽  
pp. 362-373 ◽  
Author(s):  
Rickard Lindstrand Levin ◽  
Lars Larsson
2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Katica R. (Stevanović) Hedrih ◽  
Ljiljana Veljović

Vector method based on mass moment vectors and vector rotators coupled for pole and oriented axes is used for obtaining vector expressions for kinetic pressures on the shaft bearings of a rigid body dynamics with coupled rotations around axes without intersection. Mass inertia moment vectors and corresponding deviational vector components for pole and oriented axis are defined by K. Hedrih in 1991. These kinematical vectors rotators are defined for a system with two degrees of freedom as well as for rheonomic system with two degrees of mobility and one degree of freedom and coupled rotations around two coupled axes without intersection as well as their angular velocities and intensity. As an example of defined dynamics, we take into consideration a heavy gyrorotor disk with one degree of freedom and coupled rotations when one component of rotation is programmed by constant angular velocity. For this system with nonlinear dynamics, a series of tree parametric transformations of system nonlinear dynamics are presented. Some graphical visualization of vector rotators properties are presented too.


Author(s):  
Justin P. Fisk ◽  
Jennifer S. Wayne

Musculoskeletal computational modeling can be a powerful and useful tool to study joint behavior, examine muscle and ligament function, measure joint contact pressures, simulate injury, and analyze the biomechanical results of reconstructive procedures. Commonly, biomechanical models are based on either finite element analysis (FEA) or three-dimensional rigid body dynamics. While each approach has advantages for specific applications, rigid body dynamics algorithms are highly efficient [1], thus significantly reducing solution time. Many musculoskeletal models of the elbow have been developed [2, 3], but all have constrained the articulations to have particular degrees of freedom and ignored the effects of ligaments. An accurate and robust model without these limitations has potential as a clinical tool to predict the outcome of injuries and/or surgical procedures. This work develops and validates an accurate computational model of the elbow joint whereby joint kinematics are dictated by three-dimensional bony geometry contact, ligamentous constraints, and muscle loading.


Author(s):  
Masateru Maeda ◽  
Toshiyuki Nakata ◽  
Hao Liu

Aiming at establishing an effective computational framework to accurately predict free-flying dynamics and aerodynamics we here present a comprehensive investigation on some issues associated with the modelling of free flight. Free flight modelling/simulation is essential for some types of flights e.g. falling leaves or auto-rotating seeds for plants; unsteady manoeuvres such as take-off, turning, or landing for animals. In addition to acquiring the deeper understanding of the flight biomechanics of those natural organisms, revealing the sophisticated aerodynamic force generation mechanisms employed by them may be useful in designing man-made flying-machines such as rotary or flapping micro air vehicles (MAVs). The simulations have been conducted using the coupling of computational fluid dynamics (CFD) and rigid body dynamics, thus achieving the free flight. The flow field is computed with a three-dimensional unsteady incompressible Navier-Stokes solver using pseudo-compressibility and overset gird technique. The aerodynamic forces acting on the flyer are calculated by integrating the forces on the surfaces. Similarly, the aerodynamic torque around the flyer’s centre of mass is obtained. The forces and moments are then introduced into a six degrees-of-freedom rigid body dynamics solver which utilises unit quaternions for attitude description in order to avoid singular attitude. Results are presented of a single body model and some insect-like multi-body models with flapping wings, which point to the importance of free-flight modelling in systematic analyses of flying aerodynamics and manoeuvrability. Furthermore, a comprehensive investigation indicates that the framework is capable to predict the aerodynamic performance of free-flying or even free-swimming animals in an intermediate range of Reynolds numbers (< 105).


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Wen-Hong Zhu

A systematic approach for deriving the dynamical expression of general constrained robots is developed in this paper. This approach uses rigid-body dynamics and two kinematics-based mapping matrices to form the dynamics of complex robots in closed form. This feature enables the developed modeling approach to be rigorous in nature, since every actuator and gear-head can be separated into rigid bodies and no assumption about approximation beyond rigid-body dynamics is made. The two kinematics-based mapping matrices are used to govern the velocity and force transformations among three configuration spaces, namely, general joint space, general task space, and extended subsystems space. Consequently, the derived dynamics of general constrained robots maintain the same form and main properties as the conventional single-arm constrained robots. This approach is particularly useful for robots with hyper degrees of freedom. Five examples are given.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
Homin Choi ◽  
Bingen Yang

It is well known that use of quaternions in dynamic modeling of rigid bodies can avoid the singularity due to Euler rotations. This paper shows that the dynamic response of a rigid body modeled by quaternions may become unbounded when a torque is applied to the body. A theorem is derived, relating the singularity to the axes of the rotation and applied torque, and to the degrees of freedom of the body in rotation. To avoid such singularity, a method of equivalent couples is proposed.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2015 ◽  
Vol 69 ◽  
pp. 40-44
Author(s):  
H.M. Yehia ◽  
E. Saleh ◽  
S.F. Megahid

Sign in / Sign up

Export Citation Format

Share Document