Detached Eddy Simulation of Unsteady Flow Field and Prediction of Aerodynamic Sound in a Half-Ducted Propeller Fan

Author(s):  
K. Kusano ◽  
J. H. Jeong ◽  
K. Yamada ◽  
M. Furukawa

Three-dimensional structures and unsteady nature of vortical flow fields in a half ducted propeller fan have been investigated by a detached eddy simulation (DES) based on k-ω two-equation turbulence model. The validity of the numerical simulation performed in the present study was demonstrated by the comparison to LDV measurement results. The simulation shows the tip vortex is so strong that it dominates the flow field near the rotor tip. The tip vortex does not impinge on the pressure surface of the adjacent blade directly, however it interacts with the shroud surface and induces a separation vortex on the shroud. Furthermore, this separation vortex interacts with the pressure surface of the adjacent blade. These flow structures cause high pressure fluctuation on the shroud surface and the blade pressure surface. Besides, sound pressure levels were predicted by Ffowcs William-Hawkings equation based on Lighthill’s acoustic analogy using the unsteady surface pressure data obtained by DES. As a result, the degree of contribution by each flow structure to overall sound has been estimated quantitatively.

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1687
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao ◽  
Yang Liu

This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment.


2001 ◽  
Vol 123 (4) ◽  
pp. 755-761 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in a propeller fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the propeller fan. The spiral-type breakdown of the tip vortex occurs near the midpitch, leading to significant changes in the nature of the tip vortex. The breakdown gives rise to large and cyclic movements of the tip vortex, so that the vortex impinges cyclically on the pressure surface of the adjacent blade. The movements of the tip vortex cause the leading edge separation vortex to oscillate in a cycle, but on a small scale. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage.


2001 ◽  
Vol 123 (4) ◽  
pp. 748-754 ◽  
Author(s):  
Choon-Man Jang ◽  
Masato Furukawa ◽  
Masahiro Inoue

Three-dimensional structures of the vortical flow field in a propeller fan with a shroud covering only the rear region of its rotor tip have been investigated by experimental analysis using laser Doppler velocimetry (LDV) measurements and by numerical analysis using a large eddy simulation (LES) in Part I of the present study. The propeller fan has a very complicated vortical flow field near the rotor tip compared with axial fan and compressor rotors. It is found that three vortex structures are formed near the rotor tip: the tip vortex, the leading edge separation vortex, and the tip leakage vortex. The tip vortex is so strong that it dominates the flow field near the tip. Its formation starts from the blade tip suction side near the midchord. Even at the design condition the tip vortex convects nearly in the tangential direction, thus impinging on the pressure surface of the adjacent blade. The leading edge separation vortex develops close along the tip suction surface and disappears in the rear region of the rotor passage. The tip leakage vortex is so weak that it does not affect the flow field in the rotor.


Author(s):  
J. H. Jeong ◽  
K. Takahashi ◽  
K. Iwakiri ◽  
M. Furukawa

Three-dimensional structure of separated and vortical flow field has been investigated by numerical analysis on a half-ducted propeller fan. Complicated flow phenomena in the fan were captured by the Reynolds-averaged Navier-Stokes flow simulation (RANS) and a vortex structure identification technique based on the critical point theory. The flow field around the fan rotor is dominated by the tip leakage vortex. The tip leakage vortex starts to be formed near the blade mid-chord and grows nearly in the tangential direction without vortex breakdown. In the rotor passage, the high vorticity flow around the tip leakage vortex core is impinging on the pressure surface of the adjacent blade. It is expected that the behavior of the tip leakage vortex plays a major role in characteristics of the fan noise.


2017 ◽  
Vol 22 (5) ◽  
pp. 1309-1332 ◽  
Author(s):  
Yang Zhang ◽  
Laiping Zhang ◽  
Xin He ◽  
Xiaogang Deng ◽  
Haisheng Sun

AbstractThis paper presents the simulation of complex separation flows over a modern fighter model at high angle of attack by using an unstructured/hybrid grid based Detached Eddy Simulation (DES) solver with an adaptive dissipation second-order hybrid scheme. Simulation results, including the complex vortex structures, as well as vortex breakdown phenomenon and the overall aerodynamic performance, are analyzed and compared with experimental data and unsteady Reynolds-Averaged Navier-Stokes (URANS) results, which indicates that with the DES solver, clearer vortical flow structures are captured and more accurate aerodynamic coefficients are obtained. The unsteady properties of DES flow field are investigated in detail by correlation coefficient analysis, power spectral density (PSD) analysis and proper orthogonal decomposition (POD) analysis, which indicates that the spiral motion of the primary vortex on the leeward side of the aircraft model is highly nonlinear and dominates the flow field. Through the comparisons of flow topology and pressure distributions with URANS results, the reason why higher and more accurate lift can be obtained by DES is discussed. Overall, these results show the potential capability of present DES solver in industrial applications.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Sign in / Sign up

Export Citation Format

Share Document