scholarly journals Comparative Study on CFD Turbulence Models for the Flow Field in Air Cooled Radiator

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1687
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao ◽  
Yang Liu

This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment.

Author(s):  
Yao Fu ◽  
Tong Wang ◽  
Chuangang Gu

In this article, jet influence on a gas–solid-multiphase channel flow was experimentally and numerically studied. The jet flow was found to have a diameter-selective controlling effect on the particles’ distribution. Jet flow formed a gas barrier in the channel for particles. While tiny particles could travel around and large particles could travel through, only particles on the 10 -µm scale were obviously affected. Three different calculation methods, Reynolds averaged Navier–Stokes, unsteady Reynolds averaged Navier–Stokes, and detached eddy simulation, were used to simulate this multiphase flow. By comparing the calculation results to the experimental results, it is found that all the three calculation methods could capture the basic phenomenon in the mean flow field. Nevertheless, there exist great differences in the transient flow field and particle distribution.


Author(s):  
J. Johansen ◽  
N. N. So̸rensen ◽  
J. A. Michelsen ◽  
S. Schreck

The Detached-Eddy Simulation model implemented in the computational fluid dynamics code, EllipSys3D, is applied on the flow around the NREL Phase-VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase-VI unsteady experiment. The Detached-Eddy Simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds Averaged Navier-Stokes method in the boundary layer with a Large Eddy Simulation in the free shear flow. The present study focuses on static and dynamic stall regions highly relevant for stall regulated wind turbines. Computations do predict force coefficients and pressure distributions fairly good and results using Detached-Eddy Simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds Averaged Navier-Stokes turbulence models, but no particular improvements are seen on the global blade characteristics.


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 33
Author(s):  
Horng-Wen Wu ◽  
Tang-Hong Chen ◽  
Nugroho-Putra Kelana ◽  
De-An Huang

This study analyzes transient turbulent modeling of three-dimensional multiple dimpled fin array using large eddy simulation (LES). The Navier–Stokes equations as well as the energy equation were constructed by the finite volume method and then discretized to form algebraic equations, which were solved by semi-implicit method for pressure-linked equation (SIMPLE). The solutions of temperature and velocity were obtained by iterating computation until it converged within each step. This simulation places nine fins on the bottom surface of a channel and changes the height of the dimple (0.4, 0.8, and 1.2 mm) with three different levels of Reynolds number (Re) (3500, 5000, and 6500) to investigate the temperature and flow field without gravity in forced convection. The results indicate that the dimpled fin array can generate vortices between the convex/concave dimples and the fin base and increase the influences of the height of the dimple on the flow field around the fin array. The averaged time-mean of the Nusselt number (Nu) for the dimple height of 0.8 mm is higher than that of the no-dimple case up to 14.4%, while the averaged time-mean Nu for the dimple height of 1.2 mm is lower than that of the no-dimple case up to 11.6%.


2002 ◽  
Vol 124 (4) ◽  
pp. 924-932 ◽  
Author(s):  
Scott Morton ◽  
James Forsythe ◽  
Anthony Mitchell ◽  
David Hajek

An understanding of vortical structures and vortex breakdown is essential for the development of highly maneuverable vehicles and high angle of attack flight. This is primarily due to the physical limits these phenomena impose on aircraft and missiles at extreme flight conditions. Demands for more maneuverable air vehicles have pushed the limits of current CFD methods in the high Reynolds number regime. Simulation methods must be able to accurately describe the unsteady, vortical flowfields associated with fighter aircraft at Reynolds numbers more representative of full-scale vehicles. It is the goal of this paper to demonstrate the ability of detached-eddy Simulation (DES), a hybrid Reynolds-averaged Navier-Stokes (RANS)/large-eddy Simulation (LES) method, to accurately predict vortex breakdown at Reynolds numbers above 1×106. Detailed experiments performed at Onera are used to compare simulations utilizing both RANS and DES turbulence models.


2012 ◽  
Vol 594-597 ◽  
pp. 2676-2679
Author(s):  
Zhe Liu

Although the conventional Reynolds-averaged Navier–Stokes (RANS) model has been widely applied in the industrial and engineering field, it is worthwhile to study whether these models are suitable to investigate the flow filed varying with the time. With the development of turbulence models, the unsteady Reynolds-averaged Navier–Stokes (URANS) model, detached eddy simulation (DES) and large eddy simulation (LES) compensate the disadvantage of RANS model. This paper mainly presents the theory of standard LES model, LES dynamic model and wall-adapting local eddy-viscosity (WALE) LES model. And the square cylinder is selected as the research target to study the flow characteristics around it at Reynolds number 13,000. The influence of different LES models on the flow field around the square cylinder is compared.


2018 ◽  
Vol 42 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Edison H Caicedo ◽  
Muhammad S Virk

This article describes a multiphase computational fluid dynamics–based numerical study of the aeroacoustics response of symmetric and asymmetric wind turbine blade profiles in both normal and icing conditions. Three different turbulence models (Reynolds-averaged Navier–Stokes, detached eddy simulation, and large eddy simulation) have been used to make a comparison of numerical results with the experimental data, where a good agreement is found between numerical and experimental results. Detached eddy simulation turbulence model is found suitable for this study. Later, an extended computational fluid dynamics–based aeroacoustics parametric study is carried out for both normal (clean) and iced airfoils, where the results indicate a significant change in sound levels for iced profiles as compared to clean.


2005 ◽  
Vol 127 (2) ◽  
pp. 214-222 ◽  
Author(s):  
F. Bertagnolio ◽  
N. N. Sørensen ◽  
F. Rasmussen

The objective of this paper is an improved understanding of the physics of the aeroelastic motion of wind turbine blades in order to improve the numerical models used for their design. Two- and three-dimensional Navier–Stokes calculations of the flow around a wind turbine airfoil using the k−ω SST and Detached Eddy Simulation (DES) turbulence models, as well as an engineering semiempirical dynamic stall model, are conducted. The computational results are compared to the experimental results that are available for both the static airfoil and the pitching airfoil. It is shown that the Navier–Stokes simulations can reproduce the main characteristic features of the flow. The DES model seems to be able to reproduce most of the details of the unsteady aerodynamics. Aerodynamic work computations indicate that a plunging motion of the airfoil can become unstable.


2021 ◽  
Vol 39 (1) ◽  
pp. 227-234
Author(s):  
Khelifa Hami

This contribution represents a critical view of the advantages and limits of the set of mathematical models of the physical phenomena of turbulence. Turbulence models can be grouped into two categories, depending on how turbulent quantities are calculated: direct numerical simulations (DNS) and RANS (Reynolds Averaged Navier-Stokes Equations) models. The disadvantage of these models is that they require enormous computing power, inaccessible, especially for large and complicated geometries. For this reason, hybrid models (combinations between DNS and RANS methods) have been developed, for example, the LES (“Large Eddy Simulation”) or DES (“Detached Eddy Simulation”) models. They represent a compromise - are less precise than DNS, but more precise than RANS models. The results presented in this contribution will allow and facilitate future research in the field the choice of the model approach necessary for the case studies whatever their difficulty factor.


Author(s):  
Yiannis Constantinides ◽  
Owen H. Oakley

The prediction of deepwater riser Vortex Induced Vibrations (VIV) is one of the most challenging areas in the offshore industry. Numerous experimental and numerical studies have been performed in an effort to improve the understanding and prediction of cylinder VIV behavior. This paper presents the numerical simulation of rigid circular sections, both bare and fitted with strakes, using a second order accurate finite element computational fluid dynamics (CFD) method. Two turbulence models are examined: the Spalart-Allmaras Reynolds Averaged Navier Stokes (RANS) and the Detached Eddy Simulation (DES). Pragmatic high Reynolds number simulations of fixed and moving cylinders are presented and compared with laboratory experiments. Flow visualization provides insights on how strakes mitigate VIV. Comparisons between RANS and DES results are also presented and discussed.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Paul Durbin ◽  
Zifei Yin ◽  
Elbert Jeyapaul

An adaptive method for detached-eddy simulation (DES) is tested by simulations of flow in a family of three-dimensional (3D) diffusers. The adaptive method either adjusts the model constant or defaults to a bound if the grid is too coarse. On the present grids, the adaptive method adjusts the model constant over most of the flow, without resorting to the default. Data for the diffuser family were created by wall-resolved, large-eddy simulation (LES), using the dynamic Smagorinsky model, for the purpose of testing turbulence models. The family is a parameterized set of geometries that allows one to test whether the pattern of separation is moving correctly from the top to the side wall as the parameter increases. The adaptive DES model is quite accurate in this regard. It is found to predict the mean velocity accurately, but the pressure coefficient is underpredicted. The latter is due to the onset of separation being slightly earlier in the DES than in the LES.


Sign in / Sign up

Export Citation Format

Share Document