High-Speed Imaging of Gas Flow by Parallel Phase-Shifting Digital Holography

Author(s):  
Takashi Kakue ◽  
Tatsuki Tahara ◽  
Yuki Shimozato ◽  
Kenichi Ito ◽  
Yasuhiro Awatsuji ◽  
...  

We succeeded in high-speed imaging of gas flow by means of parallel phase-shifting digital holography. This technique is capable of capturing three-dimensional (3-D) information of object and carrying out phase-shifting interferometry with a single-shot exposure because the interference fringe images in which the information of multiple phase-shifted holograms is spatially multiplexed are simultaneously recorded. We constructed a high-speed phase-shifting digital holography system by employing a quarter-wave plate and a high-speed camera. The image sensor of the camera has an anisotropic polarization-detecting function pixel by pixel. Each pixel of the polarization-detecting function corresponds to each pixel of the image sensor. The phase retardation of the reference wave is determined by the direction of the polarization axis of the each pixel. A compressed gas flow sprayed from a nozzle was set as an object. We attained the reconstructed images of phase variation caused by the gas flow. We also succeeded in phase imaging at the rate of 180,000 frames per second when the number of pixels of the captured image was 128 × 128. Additionally, we also obtained temporal subtraction images of the reconstructed images. The achieved frame rate was the fastest among not only phase-shifting digital holography but also digital holography and phase-shifting interferometry which have been ever reported, for our knowledge. It is expected that parallel phase-shifting digital holography and the constructed system can contribute to 3-D moving picture measurement of dynamically moving objects such as particle flows, shock waves, mechanical vibration, and so on.

Author(s):  
W. Meier ◽  
I. Boxx ◽  
C. Arndt ◽  
M. Gamba ◽  
N. Clemens

An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a coflow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH∗ chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow-field characteristics were determined by high-speed particle image velocimetry and Schlieren images. Furthermore, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run, several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system.


Author(s):  
Wolfgang Meier ◽  
Isaac Boxx ◽  
Christoph Arndt ◽  
Mirko Gamba ◽  
Noel Clemens

An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a co-flow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH* chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow field characteristics were determined by high-speed PIV and Schlieren images. Further, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system.


2017 ◽  
Author(s):  
Tatsuki Tahara ◽  
Takeya Kanno ◽  
Yasuhiko Arai ◽  
Takeaki Ozawa

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2247 ◽  
Author(s):  
Takeharu Etoh ◽  
Tomoo Okinaka ◽  
Yasuhide Takano ◽  
Kohsei Takehara ◽  
Hitoshi Nakano ◽  
...  

Light in flight was captured by a single shot of a newly developed backside-illuminated multi-collection-gate image sensor at a frame interval of 10 ns without high-speed gating devices such as a streak camera or post data processes. This paper reports the achievement and further evolution of the image sensor toward the theoretical temporal resolution limit of 11.1 ps derived by the authors. The theoretical analysis revealed the conditions to minimize the temporal resolution. Simulations show that the image sensor designed following the specified conditions and fabricated by existing technology will achieve a frame interval of 50 ps. The sensor, 200 times faster than our latest sensor will innovate advanced analytical apparatuses using time-of-flight or lifetime measurements, such as imaging TOF-MS, FLIM, pulse neutron tomography, PET, LIDAR, and more, beyond these known applications.


2011 ◽  
Vol 36 (16) ◽  
pp. 3254 ◽  
Author(s):  
Tatsuki Tahara ◽  
Yasuhiro Awatsuji ◽  
Yuki Shimozato ◽  
Takashi Kakue ◽  
Kenzo Nishio ◽  
...  

2016 ◽  
Vol 24 (12) ◽  
pp. 12922 ◽  
Author(s):  
Kenji Ishikawa ◽  
Kohei Yatabe ◽  
Nachanant Chitanont ◽  
Yusuke Ikeda ◽  
Yasuhiro Oikawa ◽  
...  

2020 ◽  
Vol 60 (4) ◽  
pp. A179
Author(s):  
Yuki Takase ◽  
Kazuki Shimizu ◽  
Shogo Mochida ◽  
Tomoyoshi Inoue ◽  
Kenzo Nishio ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3713
Author(s):  
Soyeon Lee ◽  
Bohyeok Jeong ◽  
Keunyeol Park ◽  
Minkyu Song ◽  
Soo Youn Kim

This paper presents a CMOS image sensor (CIS) with built-in lane detection computing circuits for automotive applications. We propose on-CIS processing with an edge detection mask used in the readout circuit of the conventional CIS structure for high-speed lane detection. Furthermore, the edge detection mask can detect the edges of slanting lanes to improve accuracy. A prototype of the proposed CIS was fabricated using a 110 nm CIS process. It has an image resolution of 160 (H) × 120 (V) and a frame rate of 113, and it occupies an area of 5900 μm × 5240 μm. A comparison of its lane detection accuracy with that of existing edge detection algorithms shows that it achieves an acceptable accuracy. Moreover, the total power consumption of the proposed CIS is 9.7 mW at pixel, analog, and digital supply voltages of 3.3, 3.3, and 1.5 V, respectively.


Sign in / Sign up

Export Citation Format

Share Document