quarter wave plate
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 66)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 33 ◽  
pp. 105183
Author(s):  
Kai Sun ◽  
Jining Li ◽  
Jinhai Sun ◽  
Liang Ge ◽  
Degang Xu ◽  
...  

Author(s):  
Rambabu Rajpoot ◽  
Amol Holkundkar ◽  
Jayendra N. Bandyopadhyay

Abstract We study the high harmonic generation (HHG) using elliptically polarized two-color driving fields. The HHG via bi-chromatic counter-rotating laser fields is a promising source of circularly polarized ultrashort XUV radiation at the attosecond time scale. The ellipticity or the polarization of the attosecond pulses can be tweaked by modifying the emitted harmonics' ellipticity, which can be controlled by varying the driver fields. A simple setup is used to control the polarization of the driving fields, which eventually changes the ellipticity of the attosecond pulses. A well-defined scaling for the ellipticity of the attosecond pulse as a function of the rotation angle of the quarter-wave plate is also deduced by solving the time-dependent Schr\"odinger equation (TDSE) in two dimensions. The scaling can further be explored to obtain the attosecond pulses of the desired degree of polarization, ranging from linear to elliptical to circular polarization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guocui Wang ◽  
Bin Hu ◽  
Muhammad Ismail Khan ◽  
Yan Zhang

Active control of terahertz (THz) wave polarization state is of great significance for sensitive detection, imaging and communication. Here, a tunable THz quarter wave plate is designed by electronically controlling a composite metasurface consisting of the gold cross antennas and a monolayer graphene. The graphene composite metasurface acts as a quarter-wave plate when the chemical potential of graphene is 0 eV, by which the polarization state of the incident THz wave is converted from linear polarization to circular polarization. After the chemical potential of graphene is increased gradually, and to 0.5 eV, the transmitted polarization state of the THz wave is changed from right circular polarization to right elliptical polarization, and to linear polarization. Furthermore, the polarization state of the THz wave is able to be changed from left circular polarization to left elliptical polarization, and to linear polarization if the device is clockwise rotated by 90°. Therefore, the polarization state of THz wave could be actively controlled by the proposed tunable THz quarter wave plate. Our work will offer a new avenue for tunable THz polarization modulation devices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Miao Wang ◽  
Xinke Wang ◽  
Peng Han ◽  
Wenfeng Sun ◽  
Shengfei Feng ◽  
...  

A circularly polarized vortex beam possesses similar focusing properties as a radially polarized beam. This type of beam is highly valuable for developing optical manufacturing technology, microscopy, and particle manipulation. In this work, a left-hand circularly polarized terahertz (THz) vortex beam (CPTVB) is generated by utilizing a THz quarter wave plate and a spiral phase plate. Focusing properties of its longitudinal component Ez are detailedly discussed on the simulation and experiment. With reducing the F-number of the THz beam and comparing with a transverse component Ex of a general circularly polarized THz beam, the simulation results show that the focal spot size and intensity of its Ez component can reach 87 and 50% of Ex under a same focusing condition. In addition, the experimental results still demonstrate that the left-hand CPTVB can always maintain fine Ez focusing properties in a broad bandwidth, which manifest the feasibility of this class of THz beams.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5572
Author(s):  
Franziska Pöller ◽  
Félix Salazar Bloise ◽  
Martin Jakobi ◽  
Jie Dong ◽  
Alexander W. Koch

To guarantee quality standards for the industry, surface properties, particularly those of roughness, must be considered in many areas of application. Today, several methods are available on the market, but some damage the surface to be tested as they measure it by contact. A non-contact method for the precise estimation of sub-micron roughness values is presented, which can be used as an extension of existing roughness measurement techniques to improve them further considering the depolarized light reflected by the sample. This setup is based on a Michelson interferometer, and by introducing a quarter-wave plate on a half part of the reference mirror, the surface roughness can be directly derived by measuring the fringe contrasts. This article introduces a simple model describing the intensity distortions resulting from the microscopic roughness in divided interferograms when considering depolarization. This work aimed to extend the measurement range of the technique developed in a previous work, in which depolarization effects are taken into account. For verification, the experimental results were compared with the fringe contrast technique, which does not consider the depolarization of the scattered light, especially regarding the extended wavelength interval, highlighting the limits of the technique. In addition, simulations of the experiments are presented. For comparison, the reference values of the sample roughness were also generated by measurements with a stylus profiler.


Sign in / Sign up

Export Citation Format

Share Document