Marangoni Convection in Water Isopropanol Mixture in the Presence of Soret Effect

Author(s):  
M. A. Rahman ◽  
M. Z. Saghir

In the present study, the onset of Marangoni convection in a liquid layer overlaying a porous layer where the whole system is being laterally heated is investigated. Two different cases are analyzed in this paper. In the first case, the Marangoni convection in the absence of the Soret effect is studied. Results revealed, when the liquid layer and the porous layer have identical thickness, the convective flow remains in the liquid layer. However, the flow covers the entire cavity when the liquid layer thickness is very small (less than 1/10th of the porous layer). For the case of Marangoni convection in the presence of Soret effect, it has been found that the isopropanol component enriches near the cold wall.

2021 ◽  
Author(s):  
Md. Abdur Rahman

In the present study, the onset of thermal convection in a liquid layer overlying a porous layer where the whole system is being laterally heated is investigated. The non-linear two-dimensional Navier Stokes equations, the energy equation, the mass balance equation and the continuity equation are solved for the liquid layer. Instead of the Navier Stokes equations, the Brinkman model is used for the porous layer. The partial differential equations are solved numerically using the finite element technique. A two-dimensional geometrical model with lateral heating is considered. Two different cases are analyzed in this thesis. In the first case, the gravity driven buoyancy convection and the Marangoni convection are studied. For the Marangoni convection, the microgravity condition is considered and the surface tension is assumed to vary linearly with temperature. Different aspect ratios, as well as thickness ratios, are studies in detail for both the buoyancy and the Marangoni convection. Results revealed that for both the buoyancy and the Marangoni cases, flow penetrates into the porous layer, only when the thickness ratio is more than 0.90. In the case of thermo-solutal convection in the presence of Soret effect, it has been found that the isopropanol component goes either towards the hot or the cold walls depending on the fluid mixtures which has been used in the system.


2021 ◽  
Author(s):  
Md. Abdur Rahman

In the present study, the onset of thermal convection in a liquid layer overlying a porous layer where the whole system is being laterally heated is investigated. The non-linear two-dimensional Navier Stokes equations, the energy equation, the mass balance equation and the continuity equation are solved for the liquid layer. Instead of the Navier Stokes equations, the Brinkman model is used for the porous layer. The partial differential equations are solved numerically using the finite element technique. A two-dimensional geometrical model with lateral heating is considered. Two different cases are analyzed in this thesis. In the first case, the gravity driven buoyancy convection and the Marangoni convection are studied. For the Marangoni convection, the microgravity condition is considered and the surface tension is assumed to vary linearly with temperature. Different aspect ratios, as well as thickness ratios, are studies in detail for both the buoyancy and the Marangoni convection. Results revealed that for both the buoyancy and the Marangoni cases, flow penetrates into the porous layer, only when the thickness ratio is more than 0.90. In the case of thermo-solutal convection in the presence of Soret effect, it has been found that the isopropanol component goes either towards the hot or the cold walls depending on the fluid mixtures which has been used in the system.


2018 ◽  
Vol 194 ◽  
pp. 01030
Author(s):  
Aleksei Kreta ◽  
Vyacheslav Maksimov

An experimental study of the influence of thermo-capillary forces and shear stresses with the side of the gas flow to the evaporation flow rate has been made. The experiments were carried out at various thicknesses of the liquid layer and constant gas velocity. The influence of the thickness of the liquid layer on the evaporation flow rate (the intensity of evaporation) has been analyzed. It is shown that the thermocapillary forces have a direct effect on the evaporation flow rate of the liquid layer.


2017 ◽  
Vol 159 ◽  
pp. 00011 ◽  
Author(s):  
Dmitry Feoktistov ◽  
Sergey Misyura ◽  
Anastasia Islamova ◽  
Kseniya Batishcheva

Sign in / Sign up

Export Citation Format

Share Document