Marangoni Convection in a Liquid Layer Overlying a Porous Layer with Evaporation at the Free Surfac

2003 ◽  
Author(s):  
R. Kozak
2021 ◽  
Author(s):  
Md. Abdur Rahman

In the present study, the onset of thermal convection in a liquid layer overlying a porous layer where the whole system is being laterally heated is investigated. The non-linear two-dimensional Navier Stokes equations, the energy equation, the mass balance equation and the continuity equation are solved for the liquid layer. Instead of the Navier Stokes equations, the Brinkman model is used for the porous layer. The partial differential equations are solved numerically using the finite element technique. A two-dimensional geometrical model with lateral heating is considered. Two different cases are analyzed in this thesis. In the first case, the gravity driven buoyancy convection and the Marangoni convection are studied. For the Marangoni convection, the microgravity condition is considered and the surface tension is assumed to vary linearly with temperature. Different aspect ratios, as well as thickness ratios, are studies in detail for both the buoyancy and the Marangoni convection. Results revealed that for both the buoyancy and the Marangoni cases, flow penetrates into the porous layer, only when the thickness ratio is more than 0.90. In the case of thermo-solutal convection in the presence of Soret effect, it has been found that the isopropanol component goes either towards the hot or the cold walls depending on the fluid mixtures which has been used in the system.


Author(s):  
M. A. Rahman ◽  
M. Z. Saghir

In the present study, the onset of Marangoni convection in a liquid layer overlaying a porous layer where the whole system is being laterally heated is investigated. Two different cases are analyzed in this paper. In the first case, the Marangoni convection in the absence of the Soret effect is studied. Results revealed, when the liquid layer and the porous layer have identical thickness, the convective flow remains in the liquid layer. However, the flow covers the entire cavity when the liquid layer thickness is very small (less than 1/10th of the porous layer). For the case of Marangoni convection in the presence of Soret effect, it has been found that the isopropanol component enriches near the cold wall.


Author(s):  
M. A. Rahman ◽  
M. Z. Saghir

In this paper, we study the onset of thermal convection in a liquid layer overlying a porous layer, where the whole system being laterally heated. The non-linear two-dimensional Navier Stokes equations, the energy equation and the mass transfer equation are solved for the liquid layer. Instead of Navier Stokes equations, the Brinkman model is used for the porous layer. The partial differential equations are solved numerically using the finite element technique. Three cases are presented in this paper. In the first case, the gravity driven buoyancy convection is studied. In the second case, the surface tension is assumed to vary linearly with temperature, therefore the existence of Marangoni convection. To analyze the Marangoni convection, we consider microgravity condition. Different aspect ratios as well as the thickness ratios are studied in detail for both the first and second cases. In the third case, diffusion and the thermodiffusion between two binary fluids with two different compositions in liquid and porous layer is studied.


2021 ◽  
Author(s):  
Md. Abdur Rahman

In the present study, the onset of thermal convection in a liquid layer overlying a porous layer where the whole system is being laterally heated is investigated. The non-linear two-dimensional Navier Stokes equations, the energy equation, the mass balance equation and the continuity equation are solved for the liquid layer. Instead of the Navier Stokes equations, the Brinkman model is used for the porous layer. The partial differential equations are solved numerically using the finite element technique. A two-dimensional geometrical model with lateral heating is considered. Two different cases are analyzed in this thesis. In the first case, the gravity driven buoyancy convection and the Marangoni convection are studied. For the Marangoni convection, the microgravity condition is considered and the surface tension is assumed to vary linearly with temperature. Different aspect ratios, as well as thickness ratios, are studies in detail for both the buoyancy and the Marangoni convection. Results revealed that for both the buoyancy and the Marangoni cases, flow penetrates into the porous layer, only when the thickness ratio is more than 0.90. In the case of thermo-solutal convection in the presence of Soret effect, it has been found that the isopropanol component goes either towards the hot or the cold walls depending on the fluid mixtures which has been used in the system.


Sign in / Sign up

Export Citation Format

Share Document