An Efficient Method for the Kinematics of Multibody Systems That Works in Singular Positions

Author(s):  
A. Avello ◽  
E. Bayo

Abstract When a multibody system reaches a singular position, one or more degrees of freedom appear instantaneously and the jacobian matrix of the constraint equations becomes rank-deficient. The classical kinematic formulation is based on the factorization of the jacobian and, therefore, fails in singular positions. In this paper we develop an efficient method, which uses a penalty and an augmented Lagrangian formulation, and successfully handles singular positions. This formulation automatically copes with redundant incompatible constraints and guarantees the stability of the constraints during numerical integration. Critical numerical examples are shown which corroborate these findings.

Author(s):  
Daniel Stadlmayr ◽  
Wolfgang Witteveen ◽  
Wolfgang Steiner

Commercial multibody system simulation (MBS) tools commonly use a redundant coordinate formulation as part of their modeling strategy. Such multibody systems subject to holonomic constraints result in second-order d-index three differential algebraic equation (DAE) systems. Due to the redundant formulation and a priori estimation of possible flexible body coordinates, the model size increases rapidly with the number of bodies. Typically, a considerable number of constraint equations (and physical degrees-of-freedom (DOF)) are not necessary for the structure's motion but are necessary for its stability like out-of-plane constraints (and DOFs) in case of pure in-plane motion. We suggest a combination of both, physical DOF and constraint DOF reduction, based on proper orthogonal decomposition (POD) using DOF-type sensitive velocity snapshot matrices. After a brief introduction to the redundant multibody system, a modified flat Galerkin projection and its application to index-reduced systems in combination with POD are presented. The POD basis is then used as an identification tool pointing out reducible constraint equations. The methods are applied to one academic and one high-dimensional practical example. Finally, it can be reported that for the numerical examples provided in this work, more than 90% of the physical DOFs and up to 60% of the constraint equations can be omitted. Detailed results of the numerical examples and a critical discussion conclude the paper.


Author(s):  
A. Avello ◽  
E. Bayo

Abstract In a singular position, the number of degrees of freedom of a mechanism instantaneously increases, which is detected by a sudden loss of rank in the jacobian matrix. This rank-deficiency causes the failure of the classical dynamic formulations. The enforcement of the constraints through a penalty method leads to an attractive and efficient dynamic formulation that, in addition, can be used at singularities. This formulation leads to a symmetric and positive definite matrix whose rank does not depend on the rank of the jacobian and thus is ideally suited for singular positions. A refinement of this approach is achieved through an augmented Lagrangian method. A simple example and two dynamic simulations show the effectiveness of the formulation.


1989 ◽  
Vol 13 (4) ◽  
pp. 113-121 ◽  
Author(s):  
M. HILLER ◽  
A. KECSKEMETHY

In complex multibody systems the motion of the bodies may depend on only a few degrees of freedom. For these systems, the equations of motion of minimal order, although more difficult to obtain, give a very efficient formulation. The present paper describes an approach for the automatic generation of these equations, which avoids the use of LAGRANGE-multipliers. By a particular concept, designated “kinematical differentials”, the problem of determining the partial derivatives required to state the equations of motion is reduced to a simple re-evaluation of the kinematics. These cover the solution of the global position, velocity and acceleration problems, i.e. the motion of all bodies is determined for given generalized (independent) coordinates. For their formulation and solution, the multibody system is mapped to a network of nonlinear transformation elements which are connected by linear equations. Each transformation element, designated “kinematical transformer”, corresponds to an independent multibody loop. This mapping of the constraint equations makes it possible to find closed-form solutions to the kinematics for a wide variety of technical applications, and (via kinematical differentials) leads also to an efficient formulation of the dynamics. The equations are derived for holonomic, scleronomic systems, but can also be extended to general nonholonomic systems.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


2013 ◽  
Vol 321-324 ◽  
pp. 1725-1729 ◽  
Author(s):  
Zhong Shuang Wang ◽  
Yang Yang Tao ◽  
Quan Yi Wen

In order to increase the reliability and efficiency of the kineto-static analysis of complex multibody systems, the corresponding vector bond graph procedure is proposed. By the kinematic constraint condition, spatial multibody systems can be modeled by vector bond graph. For the algebraic difficulties brought by differential causality in system automatic kineto-static analysis, the effective decoupling method is proposed, thus the differential causalities in system vector bond graph model can be eliminated. In the case of considering EJS, the unified formulae of driving moment and constraint forces at joints are derived based on vector bond graph, which are easily derived on a computer in a complete form and very suitable for spatial multibody systems. As a result, the automatic kineto-static analysis of spatial multibody system on a computer is realized, its validity is illustrated by the spatial multibody system with three degrees of freedom.


Author(s):  
Thomas Gorius ◽  
Robert Seifried ◽  
Peter Eberhard

In many cases, the design of a tracking controller can be significantly simplified by the use of a 2-degrees of freedom (DOF) control structure, including a feedforward control (i.e., the inversion of the nominal system dynamics). Unfortunately, the computation of this feedforward control is not easy if the system is nonminimum-phase. Important examples of such systems are flexible multibody systems, such as lightweight manipulators. There are several approaches to the numerical computation of the exact inversion of a flexible multibody system. In this paper, the singularly perturbed form of such mechanical systems is used to give a semianalytic solution to the tracking control design. The control makes the end-effector to even though not exactly, but approximately track a certain trajectory. Thereby, the control signal is computed as a series expansion in terms of an overall flexibility of the bodies of the multibody system. Due to the use of symbolic computations, the main calculations are independent of given parameters (e.g., the desired trajectories), such that the feedforward control can be calculated online. The effectiveness of this approach is shown by the simulation of a two-link flexible manipulator.


2013 ◽  
Vol 4 (1) ◽  
pp. 1-20 ◽  
Author(s):  
S. K. Saha ◽  
S. V. Shah ◽  
P. V. Nandihal

Abstract. Dynamic modelling of a multibody system plays very essential role in its analyses. As a result, several methods for dynamic modelling have evolved over the years that allow one to analyse multibody systems in a very efficient manner. One such method of dynamic modelling is based on the concept of the Decoupled Natural Orthogonal Complement (DeNOC) matrices. The DeNOC-based methodology for dynamics modelling, since its introduction in 1995, has been applied to a variety of multibody systems such as serial, parallel, general closed-loop, flexible, legged, cam-follower, and space robots. The methodology has also proven useful for modelling of proteins and hyper-degree-of-freedom systems like ropes, chains, etc. This paper captures the evolution of the DeNOC-based dynamic modelling applied to different type of systems, and its benefits over other existing methodologies. It is shown that the DeNOC-based modelling provides deeper understanding of the dynamics of a multibody system. The power of the DeNOC-based modelling has been illustrated using several numerical examples.


Author(s):  
Lina Zhang ◽  
Xiaoting Rui ◽  
Jianshu Zhang ◽  
Junjie Gu ◽  
Huaqing Zheng ◽  
...  

Abstract The conventional transfer matrix method for multibody systems (MSTMM) with closed-loops (CLs) has superiority of avoiding the global dynamics equations. However, it requires a transfer equation to link Multiple-Input Single-Output (MISO) rigid body with multi-hinge subset and supplement equations caused CLs. In order to simplify the deduction processing and improve the numerical stability, the Riccati transformation is introduced and the Riccati transfer matrix method for multibody systems (RMSTMM) with CL is proposed. In a system with CLs, each CL is cut off at the connection point, and the new unknowns generated at the cut-off point are introduced into the Riccati recurrence relation. The numerical results of the conventional MSTMM and the RMSTMM are compared, and the reliability of the RMSTMM is verified. Meanwhile, the constrained Jacobian matrix is used to eliminate the non-working reactions of the system. The variations of the constraint violation error are compared to validate necessarily of constraints.


Author(s):  
Paulo Flores ◽  
Parviz E. Nikravesh

The dynamic equations of motion for constrained multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. It is known that the standard resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general review of the main methods commonly used to control or eliminate the violation of the constraint equations in the context of multibody dynamics formulation is presented and discussed. Furthermore, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is also presented. The basic idea of this approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations.


Sign in / Sign up

Export Citation Format

Share Document