scholarly journals Parametrically Excited Nonlinear Two-Degree-of-Freedom Systems With Repeated Natural Frequencies

Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
D. T. Mook

Abstract The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation are analyzed. The results are applied to the flutter of a simply-supported panel in a supersonic airstream.

1995 ◽  
Vol 2 (1) ◽  
pp. 43-57 ◽  
Author(s):  
A. H. Nayfeh ◽  
C. Chin ◽  
D. T. Mook

The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation including the formation of a homoclinic orbit are analyzed. The results are applied to the flutter of a simply supported panel in a supersonic airstream.


2013 ◽  
Vol 20 (6) ◽  
pp. 1113-1124 ◽  
Author(s):  
Johannes Welte ◽  
Till Jochen Kniffka ◽  
Horst Ecker

1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


Author(s):  
Artem Karev ◽  
Peter Hagedorn

Abstract Since the discovery of parametric anti-resonance, parametric excitation has also become more prominent for its stabilizing properties. While resonance and anti-resonance are mostly studied individually, there are systems where both effects appear simultaneously at each combination resonance frequency. With a steep transition between them and a high sensitivity of their relative positions, there is a need for a concurrent study of resonance and anti-resonance. The semi-analytical method of normal forms is used to derive approximate analytical expressions describing the magnitude of the stability impact as well as the precise locations of stabilized and destabilized areas. The results reveal that the separate appearance of resonance and anti-resonance is only a special case occurring for synchronous parametric excitation. In particular, in circulatory systems the simultaneous appearance is expected to be much more common.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zihan Wang ◽  
Jieqiong Xu ◽  
Shuai Wu ◽  
Quan Yuan

The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method.


Author(s):  
R. J. Henderson ◽  
J. K. Raine

Parts 1 and 2 of this paper gave a design overview and described the dynamics of a prototype two-degree-of-freedom pneumatic suspension for an ambulance stretcher. This concluding part briefly reviews laboratory shaker table and ambulance road test performance of the suspension with passive pneumatic damping. The suspension system is found to offer compact low-cost isolation with lower natural frequencies than achieved in earlier mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document