A New Finding on the Dynamic Stiffness Matrices of Asymmetric and Axisymmetric Shafts

Author(s):  
Francesco A. Raffa ◽  
Furio Vatta

Abstract In this paper the dynamic stiffness method is developed to analyze a rotating asymmetric shaft, i.e. a shaft whose transverse section is characterized by dissimilar principal moments of inertia. The shaft is modeled according to the Rayleigh beam theory including the effects of both translational and rotational inertia, and gyroscopic moments. The mathematical description is carried out in a reference system rotating at the shaft speed and is based on the exact solution of the governing differential equations of motion. The exact expressions of the shaft displacements are utilized for deriving the 8 × 8 complex dynamic stiffness matrix of the shaft. A new relationship is obtained which links the dynamic stiffness matrix of the asymmetric shaft to the 4 × 4 real dynamic stiffness matrix of the axisymmetric shaft.

2002 ◽  
Vol 124 (4) ◽  
pp. 649-653
Author(s):  
Francesco A. Raffa ◽  
Furio Vatta

In this paper the dynamic stiffness method is developed to analyze a rotating asymmetric shaft, i.e., a shaft whose transverse section is characterized by dissimilar principal moments of inertia. The shaft is modelled according to the Rayleigh beam theory including the effects of both translational and rotational inertia, and gyroscopic moments. The mathematical description is carried out in a reference system rotating at the shaft speed and is based on the exact solution of the governing differential equations of motion. The exact expressions of the shaft displacements are utilized for deriving the 8×8 complex dynamic stiffness matrix of the shaft. A new relationship is obtained which links the dynamic stiffness matrix of the asymmetric shaft to the 4×4 real dynamic stiffness matrix of the axisymmetric shaft.


1994 ◽  
Vol 1 (6) ◽  
pp. 497-506 ◽  
Author(s):  
Shilin Chen ◽  
Michel Géradin

An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.


2002 ◽  
Vol 124 (3) ◽  
pp. 397-409 ◽  
Author(s):  
Wisam Busool ◽  
Moshe Eisenberger

In this study, the dynamic stiffness method is employed for the free vibration analysis of helical springs. This work gives the exact solutions for the natural frequencies of helical beams having arbitrary shapes, such as conical, hyperboloidal, and barrel. Both the cross-section dimensions and the shape of the beam can vary along the axis of the curved member as polynomial expressions. The problem is described by six differential equations. These are second order equations with variable coefficients, with six unknown displacements, three translations, and three rotations at every point along the member. The proposed solution is based on a new finite-element method for deriving the exact dynamic stiffness matrix for the member, including the effects of the axial and the shear deformations and the rotational inertia effects for any desired precision. The natural frequencies are found as the frequencies that cause the determinant of the dynamic stiffness matrix to become zero. Then the mode shape for every natural frequency is found. Examples are given for beams and helical springs with different shape, which can vary along the axis of the member. It is shown that the present numerical results agree well with previously published numerical and experimental results.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Jun Li ◽  
Hongxing Hua ◽  
Rongying Shen

The dynamic stiffness matrix of a uniform isotropic beam element based on trigonometric shear deformation theory is developed in this paper. The theoretical expressions for the dynamic stiffness matrix elements are found directly, in an exact sense, by solving the governing differential equations of motion that describe the deformations of the beam element according to the trigonometric shear deformation theory, which include the sinusoidal variation of the axial displacement over the cross section of the beam. The application of the dynamic stiffness matrix to calculate the natural frequencies and normal mode shapes of two rectangular beams is discussed. The numerical results obtained are compared to the available solutions wherever possible and validate the accuracy and efficiency of the present approach.


Author(s):  
Dominic R. Jackson ◽  
S. Olutunde Oyadiji

The Dynamic Stiffness Method (DSM) is used to analyse the free vibration characteristics of a rotating uniform Shear beam. Starting from the kinetic and strain energy expressions, the Hamilton’s principle is used to obtain the governing differential equations of motion and the natural boundary conditions. The two equations are solved simultaneously and expressed each in terms of displacement and slope only. The Frobenius power series solution is applied to solve the equations and the resulting solutions are also expressed in terms of four independent solutions. Applying the appropriate boundary conditions, the Dynamic Stiffness Matrix is assembled. The natural frequencies of vibration using the DSM are computed by employing the in-built root finding algorithm in Mathematica as well as by implementing the Wittrick-Williams algorithm in a numerical routine in Mathematica. The results obtained using the DSM are presented in tabular and graphical forms and are compared with results obtained using the Timoshenko and the Bernoulli-Euler theories.


2021 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM) method, where the bearings flexibility is represented by mass less linear spring elements with tuneable stiffness. A dedicated MAT LAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions.The developed method is applied to an illustrative example of spindle system.When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value.The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system.The spindle frequency results are also validated against the experimental data.The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Tsung-Hsien Tu ◽  
Jen-Fang Yu ◽  
Hsin-Chung Lien ◽  
Go-Long Tsai ◽  
B. P. Wang

A method for free vibration of 3D space frame structures employing transfer dynamic stiffness matrix (TDSM) method based on Euler–Bernoulli beam theory is developed in this paper. The exact TDSM of each member is assembled to obtain the system matrix that is frequency dependent. All free vibration eigensolutions including coincident roots for the characteristic equation can be obtained to any desired accuracy using the algorithm developed by Wittrick and Williams (1971, “A General Algorithm for Computing Natural Frequencies of Elastic Structures,” Q. J. Mech. Appl. Math., 24, pp. 263–284). Exact eigenfunction of structures can then be computed using the dynamic shape function and the corresponding eigenvector. The results showed good agreement with those computed by finite element method.


1995 ◽  
Vol 117 (1) ◽  
pp. 80-86 ◽  
Author(s):  
T. Morita ◽  
H. Okamura

The modeling and analysis procedures with the dynamic stiffness matrix method described in Part 1 were applied to a crankshaft system, consisting of crankshaft, front pulley, flywheel, piston, and connecting rod, under firing conditions. For firing conditions, (7) one half of the reciprocating masses consisting of the piston, piston pin, and connecting rod small end, and (2) rotating masses of the connecting rod big end mass, were attached to the two ends of the crankpin, taking account of the rigidity of the connecting rod. The excitation forces were calculated from the gas force and the inertia force due to the reciprocating masses. By solving the equations of motion derived in the form of the dynamic stiffness matrix, we calculated the three-dimensional steady-state vibrations of the crankshaft system under firing conditions. A crankshaft system for a four-cylinder in-line automobile engine was used for the analysis. We calculated the influence of the mass and moments of inertia of the front pulley on the behavior of the crankshaft vibrations and the excitation induced at the crankjournal bearings. Calculated values were compared with experimental results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Omar Gaber ◽  
Seyed M. Hashemi

The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM) method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.


Sign in / Sign up

Export Citation Format

Share Document