principal moments of inertia
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 57 (1) ◽  
pp. 015019
Author(s):  
O Lozovenko ◽  
Yu Minaiev ◽  
R Lutai

Abstract The purpose of this publication is to present a novel approach to the demonstration of the Dzhanibekov effect. The main idea of our version is to use a lightweight spinning top of a spherical external form but distinct principal moments of inertia floating in the upward flow of air. As a result, the Dzhanibekov effect can be easily demonstrated anywhere on Earth: in any classroom, or even in the ‘home-lab’. The proposed demonstration allows one to observe the periodical flipping motion of the asymmetrical top with the clearly seen quasi-stable rotational phase. It may also become the base for various theoretical and experimental research projects for students.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaming Liu ◽  
Djorde Antonijević ◽  
Ruining Li ◽  
Yuxuan Fan ◽  
Ksenija Dukić ◽  
...  

The aim of the present paper is to determine the sex of the individual using three-dimensional geometric and inertial analyses of metatarsal bones. Metatarsals of 60 adult Chinese subjects of both sexes were scanned using Aquilion One 320 Slice CT Scanner. The three-dimensional models of the metatarsals were reconstructed, and thereafter, a novel software using the center of mass set as the origin and the three principal axes of inertia was employed for model alignment. Eight geometric and inertial variables were assessed: the bone length, bone width, bone height, surface-area-to-volume ratio, bone density, and principal moments of inertia around the x, y, and z axes. Furthermore, the discriminant functions were established using stepwise discriminant function analysis. A cross-validation procedure was performed to evaluate the discriminant accuracy of functions. The results indicated that inertial variables exhibit significant sexual dimorphism, especially principal moments of inertia around the z axis. The highest dimorphic values were found in the surface-area-to-volume ratio, principal moments of inertia around the z axis, and bone height. The accuracy rate of the discriminant functions for sex determination ranged from 88.3% to 98.3% (88.3%–98.3% cross-validated). The highest accuracy of function was established based on the third metatarsal bone. This study showed for the first time that the principal moment of inertia of the human bone may be successfully implemented for sex estimation. In conclusion, the sex of the individual can be accurately estimated using a combination of geometric and inertial variables of the metatarsal bones. The accuracy should be further confirmed in a larger sample size and be tested or independently developed for distinct population/age groups before the functions are widely applied in unidentified skeletons in forensic and bioarcheological contexts.


GEODYNAMICS ◽  
2020 ◽  
Vol 2(29)2020 (2(29)) ◽  
pp. 5-20
Author(s):  
Alexander N. Marchenko ◽  
◽  
S. S. Perii ◽  
Z. R. Tartachynska ◽  
◽  
...  

This study aims to derive the Earth’s temporally varying Earth’s tensor of inertia based on the dynamical ellipticity , the coefficients , from UT/CSR data. They allow to find the time-varying Earth’s mechanical and geometrical parameters during the following periods: (a) from 1976 to 2020 based on monthly and weekly solutions of the coefficient ; (b) from 1992 to 2020 based on monthly and weekly solutions of the non zero coefficients , related to the principal axes of inertia, allowing to build models their long-term variations. Differences between and , given in various systems, represent the average value , which is smaller than time variations of or , characterizing a high quality of UT/CSR solutions. Two models for the time-dependent dynamical ellipticity were constructed using long-term variations for the zonal coefficient during the past 44 and 27.5 years. The approximate formulas for the time-dependent dynamical ellipticity were provided by the additional estimation of each parameter of the Taylor series, fixing at epoch =J2000 according to the IAU2000/2006 precession-nutation theory. The potential of the time-dependent gravitational quadrupole according to Maxwell theory was used to derive the new exact formulas for the orientation of the principal axes , , via location of the two quadrupole axes. Hence, the Earth’s time-dependent mechanical and geometrical parameters, including the gravitational quadrupole, the principal axes and the principal moments of inertia were computed at each moment during the past 27.5 years from 1992 to 2020. However, their linear change in all the considered parameters is rather unclear because of their various behavior on different time-intervals including variations of a sign of the considered effects due to a jump in the time-series during the time-period 1998 – 2002. The Earth’s 3D and 1D density models were constructed based on the restricted solution of the 3D Cartesian moments inside the ellipsoid of the revolution. They were derived with conditions to conserve the time-dependent gravitational potential from zero to second degree, the dynamical ellipticity, the polar flattening, basic radial jumps of density as sampled for the PREM model, and the long-term variations in space-time mass density distribution. It is important to note that in solving the inverse problem, the time dependence in the Earth's inertia tensor arises due to changes in the Earth's density, but does not depend on changes in its shape, which is confirmed by the corresponding equations where flattening is canceled.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
A. I. Ismail

In this paper, the stability conditions for the rotary motion of a heavy solid about its fixed point are considered. The center of mass of the body is assumed to lie on the moving z-axis which is assumed to be the minor axis of the ellipsoid of inertia. The nonlinear equations of motion and their three first integrals are obtained when the principal moments of inertia are distributed as I 1 < I 2 < I 3 . We construct a Lyapunov function L to investigate the stability conditions for this motion. We give a numerical example to illustrate the necessary and sufficient conditions for the stability of the body at certain moments of inertia. This problem has many important applications in different sciences.


2020 ◽  
Vol 6 (3) ◽  
pp. 396-397
Author(s):  
Heiner Martin ◽  
Josephine Wittmüß ◽  
Thomas Mittlmeier ◽  
Niels Grabow

AbstractThe investigation of matching of endoprosthesis tibial components to the bone cross section is of interest for the manufacturer as well as for the surgeon. On the one hand, a systemic design of the prosthesis and the assortment is possible, on the other hand, a better matching implantation is enabled on the basis of experience of this study. CT sections were segmented manually using a CAD system and fitted by spline functions, then superseded with cross sections of the tibial component of a modified Hintermann H3 prosthesis. The principal moments of inertia, the direction of the principal axes and the area of the section were evaluated. Based on the relative differences of the principal moments of inertia, recommendations for application of the different prosthesis size and its selection with the surgery can be made.


Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the inertia tensor and its relation with the mass quadrupole moment tensor, the principal axes and the principal moments of inertia, evolution of the period of the Earth’s rotation around its axis due to the action of tidal forces, and the motion of the gyrocompass at a given latitude. The chapter also addresses precession of a symmetric top, the stability of rotations of an asymmetric top, “motion” of a plane disk which rolls in the field of gravity over a smooth horizontal plane, and the displacement from the vertical of a particle which is dropped from a given height with zero initial velocity. Finally, the chapter discusses the Lagrange point in the Sun-Jupiter system.


Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

This chapter addresses the inertia tensor and its relation with the mass quadrupole moment tensor, the principal axes and the principal moments of inertia, evolution of the period of the Earth’s rotation around its axis due to the action of tidal forces, and the motion of the gyrocompass at a given latitude. The chapter also addresses precession of a symmetric top, the stability of rotations of an asymmetric top, “motion” of a plane disk which rolls in the field of gravity over a smooth horizontal plane, and the displacement from the vertical of a particle which is dropped from a given height with zero initial velocity. Finally, the chapter discusses the Lagrange point in the Sun-Jupiter system.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3226 ◽  
Author(s):  
Colin Bournez ◽  
Fabrice Carles ◽  
Gautier Peyrat ◽  
Samia Aci-Sèche ◽  
Stéphane Bourg ◽  
...  

Since the first approval of a protein kinase inhibitor (PKI) by the Food and Drug Administration (FDA) in 2001, 55 new PKIs have reached the market, and many inhibitors are currently being evaluated in clinical trials. This is a clear indication that protein kinases still represent major drug targets for the pharmaceutical industry. In a previous work, we have introduced PKIDB, a publicly available database, gathering PKIs that have already been approved (Phase 4), as well as those currently in clinical trials (Phases 0 to 3). This database is updated frequently, and an analysis of the new data is presented here. In addition, we compared the set of PKIs present in PKIDB with the PKIs in early preclinical studies found in ChEMBL, the largest publicly available chemical database. For each dataset, the distribution of physicochemical descriptors related to drug-likeness is presented. From these results, updated guidelines to prioritize compounds for targeting protein kinases are proposed. The results of a principal component analysis (PCA) show that the PKIDB dataset is fully encompassed within all PKIs found in the public database. This observation is reinforced by a principal moments of inertia (PMI) analysis of all molecules. Interestingly, we notice that PKIs in clinical trials tend to explore new 3D chemical space. While a great majority of PKIs is located on the area of “flatland”, we find few compounds exploring the 3D structural space. Finally, a scaffold diversity analysis of the two datasets, based on frequency counts was performed. The results give insight into the chemical space of PKIs, and can guide researchers to reach out new unexplored areas. PKIDB is freely accessible from the following website: http://www.icoa.fr/pkidb.


2018 ◽  
Vol 184 ◽  
pp. 01003 ◽  
Author(s):  
Stelian Alaci ◽  
Florina-Carmen Ciornei ◽  
Sorinel-Toderas Siretean ◽  
Mariana-Catalina Ciornei ◽  
Gabriel Andrei Ţibu

A spatial pendulum with the vertical immobile axis and horizontal mobile axis is studied and the differential equations of motion are obtained applying the method of Lagrange equations. The equations of motion were obtained for the general case; the only simplifying hypothesis consists in neglecting the principal moments of inertia about the axes normal to the oscillation axes. The system of nonlinear differential equations was numerically integrated. The correctness of the obtained solutions was corroborated to the dynamical simulation of the motion via dynamical analysis software. The perfect concordance between the two solutions proves the rightness of the equations obtained.


Sign in / Sign up

Export Citation Format

Share Document