The Influence of Nonlinear Boundary Conditions on the Nonplanar Autoparametric Responses of an Inextensible Beam

Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

Abstract The nonplanar responses of a beam clamped at one end and restrained by nonlinear springs at the other end is investigated under a primary resonance base excitation. The beam’s geometry and the springs’ linear stiffnesses are such that the system possesses a one-to-one autoparametric resonance between the nth in-plane and out-of-plane modes. The beam is modeled using Euler-Bernoulli theory and includes cubic geometric and inertia nonlinearities. The objective is to assess the influence of the nonlinear boundary conditions on the beam’s oscillations. To this end, the method of multiple scales is directly applied to the integral-partial-differential equations of motion and associated boundary conditions. The result is a set of four nonlinear ordinary-differential equations that govern the slow dynamics of the system. Solutions of these modulation equations are then used to characterize the system’s nonlinear behavior.

2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

AbstractIn this paper, we deal with multiple solutions of fractional differential equations with p-Laplacian operator and nonlinear boundary conditions. By applying the Amann theorem and the method of upper and lower solutions, we obtain some new results on the multiple solutions. An example is given to illustrate our results.


2002 ◽  
Vol 8 (3) ◽  
pp. 337-387 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Haider N. Arafat ◽  
Char-Ming Chin ◽  
Walter Lacarbonara

We investigate the nonlinear nonplanar responses of suspended cables to external excitations. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The sag-to-span ratio of the cable considered is such that the natural frequency of the first symmetric in-plane mode is at first crossover. Hence, the first symmetric in-plane mode is involved in a one-to-one internal resonance with the first antisymmetric in-plane and out-of-plane modes and, simultaneously, in a two-to-one internal resonance with the first symmetric out-of-plane mode. Under these resonance conditions, we analyze the response when the first symmetric in-plane mode is harmonically excited at primary resonance. First, we express the two governing equations of motion as four first-order (i.e., state-space formulation) partial-differential equations. Then, we directly apply the methods of multiple scales and reconstitution to determine a second-order uniform asymptotic expansion of the solution, including the modulation equations governing the dynamics of the phases and amplitudes of the interacting modes. Then, we investigate the behavior of the equilibrium and dynamic solutions as the forcing amplitude and resonance detunings are slowly varied and determine the bifurcations they may undergo.


1997 ◽  
Vol 56 (2) ◽  
pp. 197-208 ◽  
Author(s):  
H.B. Thompson

We give sufficient conditions involving f, g and ω in order that systems of differential equations of the form y″ = f(x, y, y′), x in [0, 1] with fully nonlinear boundary conditions of the form g((y(0), y(1)), (y′(0), y′(1))) = 0 have solutions y with (x, y) in . We use Schauder degree theory in a novel space. Well known existence results for the Picard, the periodic and the Neumann boundary conditions follow as special cases of our results.


Sign in / Sign up

Export Citation Format

Share Document