scholarly journals A Gluing Algorithm for Distributed Simulation of Multibody Systems

Author(s):  
Jinzhong Wang ◽  
Zheng-Dong Ma ◽  
Gregory M. Hulbert

A new gluing algorithm is presented that can be used to couple subsystem models for dynamics simulation of mechanical systems. The gluing algorithm developed relies only on information available at the subsystem interfaces. This strategy not only improves the efficiency of the algorithm, but also engenders model security by limiting model access only to the exposed interface information. These features make the algorithm suitable for a real and practical distributed simulation environment.

2003 ◽  
Vol 34 (1/2) ◽  
pp. 159-188 ◽  
Author(s):  
Jinzhong Wang ◽  
Zheng-Dong Ma ◽  
Gregory M. Hulbert

Author(s):  
Albert Peiret ◽  
József Kövecses ◽  
Francisco González ◽  
Marek Teichmann

Abstract Co-simulation techniques enable the coupling of physically diverse subsystems in an efficient and modular way. Complex engineering applications can be simulated in co-simulation setups, in which each subsystem is solved and integrated using numerical methods tailored to its physical behaviour. Co-simulation implies that the communication between subsystems takes place at discrete-time instants and is limited to a given set of coupling variables, while the internals of each subsystem are generally not accessible to the rest of the simulation environment. In non-iterative co-simulation schemes, this may lead to the instability of the integration. Increasingly demanding requirements in the simulation of machinery have led to the coupling, in real-time co-simulation setups, of multibody models of mechanical systems to computational representations of non-mechanical subsystems, such as hydraulics and electronics. Often, these feature faster dynamics than their mechanical counterparts, which leads to the use of multirate integration in non-iterative co-simulation environments. The stability of the integration in these cases can be enhanced using interface models, i.e., reduced representations of the multibody system, to provide meaningful input values to faster subsystems between communication points. This work describes such interface models that can be used to represent nonsmooth mechanical systems subjected to unilateral contact and friction.


Author(s):  
Geunsoo Ryu ◽  
Zheng-Dong Ma ◽  
Gregory M. Hulbert

A distributed simulation platform, denoted as D-Sim, has been developed previously by our research group, which comprises three essential attributes: a general XML description for models suitable for both leaf and integrated models, a gluing algorithm, which only relies on the interface information to integrate subsystem models, and a logical distributed simulation architecture that can be realized using any connection-oriented distributed technology. The overarching research focus is to integrate heterogeneous subsystem models, e.g., multibody dynamics subsystems models and finite element subsystems models and to conduct seamlessly integrated simulation and design tasks in a distributed computing environment. A Partitioned Iteration Method (PIM) is proposed in this paper, which decouples the rigid body motion from elastic deformation of the simulated system using an iteration scheme. The method employs a CG-following reference frame for each deformable body in the distributed simulation of flexible multibody systems. The resultant simulation system can be used to integrate distributed deformable bodies D-Sim, while allowing large rigid body motions among the bodies or subsystems. It also enables using independent simulation servers; where each server can run commercially available or research-based MBD and/or FEM codes. Examples are provided that demonstrate the performance of the method and also how to decouple and integrate rigid body motion and elastic deformation using the developed gluing algorithm.


Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


2014 ◽  
Vol 619 ◽  
pp. 8-12
Author(s):  
Ju Seok Kang

It is difficult to calculate dynamic equilibrium configuration in the mechanical systems, especially with the constraint conditions. In this paper, a method to calculate the dynamic equilibrium positions in the constrained mechanical systems is proposed. The accelerations of independent coordinates are derived in the algebraic form so that the numerical solution is easily obtained by the iteration method. The proposed method has been applied to calculate the dynamic equilibrium configuration for speed governor and the wheelset of railway vehicle.


Author(s):  
Paweł Malczyk ◽  
Janusz Fra¸czek

Efficient dynamics simulations of complex multibody systems are essential in many areas of computer aided engineering and design. As parallel computing resources has become more available, researchers began to reformulate existing algorithms or to create new parallel formulations. Recent works on dynamics simulation of multibody systems include sequential recursive algorithms as well as low order, exact or iterative parallel algorithms. The first part of the paper presents an optimal order parallel algorithm for dynamics simulation of open loop chain multibody systems. The proposed method adopts a Featherstone’s divide and conquer scheme by using Lagrange multipliers approach for constraint imposition and dependent set of coordinates for the system state description. In the second part of the paper we investigate parallel efficiency measures of the proposed formulation. The performance comparisons are made on the basis of theoretical floating-point operations count. The main part of the paper is concetrated on experimental investigation performed on parallel computer using OpenMP threads. Numerical experiments confirm good overall efficiency of the formulation in case of modest parallel computing resources available and demonstrate certain computational advantages over sequential versions.


Author(s):  
Jianxun Liang ◽  
Ou Ma ◽  
Caishan Liu

Finite element methods are widely used for simulations of contact dynamics of flexible multibody systems. Such a simulation is computationally very inefficient because the system’s dimension is usually very large and the simulation time step has to be very small in order to ensure numerical stability. A potential solution to the problem is to apply a model reduction method in the simulation. Although many model reduction techniques have been developed, most of them cannot be readily applied due to the high nonlinearity of the involved contact dynamics model. This paper presents a solution to the problem. The approach is based on a modified Lyapunov balanced truncation method. A numerical example is presented to demonstrate that, by applying the proposed model reduction method, the simulation process can be significantly speeded up while the resulting error caused by the model reduction is still within an acceptable level.


Sign in / Sign up

Export Citation Format

Share Document