Nonlinear Energy Pumping With Strongly Nonlinear Coupling: Identification of Resonance Captures in Numerical and Experimental Results

Author(s):  
E. Gourdon ◽  
S. Coutel ◽  
C. H. Lamarque ◽  
S. Pernot

The present work aims to study the effect of a nonlinear energy sink (NES) with relatively small mass on the dynamics of a coupled system under impulsion with free oscillations. The process of energy transfer is governed by structure of damped nonlinear normal modes of the system. In particular the energy pumping occurs if the nonlinear normal mode is quickly broken down with rather abrupt decrease of both amplitudes, i.e. a bifurcation (brutal change of frequency) is associated with the breakdown of the resonant regime of vibrations. The theoretical effects are experimentally verified with a mechanical experiment which confirms the above results by using a small building model. To identify those frequency migrations, a new wavelet-based methodology, namely quasi-continuous wavelet method, is used.

2006 ◽  
Vol 1 (3) ◽  
pp. 187-195 ◽  
Author(s):  
E. Gourdon ◽  
C. H. Lamarque

The effects of a nonlinear energy sink during the instationary regime are analyzed by introducing uncertain parameters to verify the robustness of the transient spatial energy transfer when parameters are not well known. It was shown that it is possible to passively absorb energy from a linear nonconservative system (damped) structure to a nonlinear attachment weakly coupled to the linear one. This rapid and irreversible transfer of energy, named energy pumping, is studied by taking into account uncertainties on parameters, especially damping (since damping plays a great role and there is a lack of knowledge about it). In essence, the nonlinear subsystem acts as a passive nonlinear energy sink for impulsively applied external vibrational disturbances. The aim is to be able to apply energy pumping in practice where the nonlinear attachment realization will never perfectly reflect the design. Since strong nonlinearities are involved, polynomial chaos expansions are used to obtain information about random displacements. Not only are numerical investigations done, but nonlinear normal modes and the role of damping are also analytically studied, which confirms the numerical studies and shows the supplementary information obtained compared to a parametrical study.


2013 ◽  
Vol 325-326 ◽  
pp. 214-217
Author(s):  
Yong Chen ◽  
Yi Xu

Using nonlinear energy sink absorber (NESA) is a good countermeasure for vibration suppression in wide board frequency region. The nonlinear normal modes (NNMs) are helpful in dynamics analysis for a NESA-attached system. Being a primary structure, a cantilever beam whose modal functions contain hyperbolic functions is surveyed, in case of being attached with NESA and subjected to a harmonic excitation. With the help of Galerkins method and Raushers method, the NNMs are obtained analytically. The comparison of analytical and numerical results indicates a good agreement, which confirms the existence of the nonlinear normal modes.


2004 ◽  
Vol 126 (2) ◽  
pp. 235-244 ◽  
Author(s):  
Alexander F. Vakakis ◽  
D. Michael McFarland ◽  
Lawrence Bergman ◽  
Leonid I. Manevitch ◽  
Oleg Gendelman

We examine passive energy pumping in a system of damped coupled oscillators. This is a one-way, passive and irreversible energy flow from a linear main system to a nonlinear attachment that acts, in essence, as a nonlinear energy sink (NES). Energy pumping is caused by 1:1 resonance captures on resonant manifolds of the damped systems. We show that the NES is capable of absorbing significant portions of the energies generated by transient, broadband external excitations. By performing a series of numerical simulations we confirm that the energy dependence of the nonlinear normal modes (NNMs) of the underlying undamped, unforced system determines, in essence, the resonance capture and energy pumping dynamics in the corresponding damped system. We present numerical simulations of single- and multi-mode energy pumping, that involve isolated resonance captures or resonance capture cascades, respectively. In addition, we discuss methodologies for enhancing the nonlinear energy pumping phenomenon by properly selecting the system parameters. The described technique of passively localizing and locally eliminating externally induced energy provides a new paradigm for vibration and shock isolation of mechanical oscillators.


2006 ◽  
Vol 74 (2) ◽  
pp. 325-331 ◽  
Author(s):  
O. V. Gendelman ◽  
Yu. Starosvetsky

Quasi-periodic response of a linear oscillator attached to nonlinear energy sink with relatively small mass under external sinusoidal forcing in a vicinity of main (1:1) resonance is studied analytically and numerically. It is shown that the quasi-periodic response is exhibited in well-defined amplitude-frequency range of the external force. Two qualitatively different regimes of the quasi-periodic response are revealed. The first appears as a result of linear instability of the steady-state regime of the oscillations. The second one occurs due to interaction of the dynamical flow with invariant manifold of damped-forced nonlinear normal mode of the system, resulting in hysteretic motion of the flow in the vicinity of this mode. Parameters of external forcing giving rise to the quasi-periodic response are predicted by means of simplified analytic model. The model also allows predicting that the stable quasi-periodic regimes appear for certain range of damping coefficient. All findings of the simplified analytic model are verified numerically and considerable agreement is observed.


Author(s):  
Ravi Kumar R. Tumkur ◽  
Ramon Calderer ◽  
Arif Masud ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis ◽  
...  

We study the nonlinear fluid-structure interaction of an elastically supported rigid circular cylinder in a laminar flow. Periodic shedding of counter-rotating vortices from either side of the cylinder results in vortex-induced vibration of the cylinder. We demonstrate the passive suppression of the limit cycle oscillation (LCO) of the cylinder with the use of an essentially nonlinear element, the nonlinear energy sink (NES). The computational study is performed at a Reynolds number (Re) of 100; Re is defined based on the cylinder diameter and inlet velocity. The variational multiscale residual-based stabilized finite-element method is used to compute approximate solutions of the incompressible Navier-Stokes equations. The NES is comprised of a small mass, an essentially nonlinear spring, and a linear damper. With appropriate values for the NES parameters, the coupled system of flow-cylinder-NES exhibits resonant interactions, resulting in targeted energy transfer (TET) from the flow via the cylinder to the NES, where the energy is dissipated by the linear damper. The NES interacts with the fluid via the cylinder by altering the phase relation between the lift force and the cylinder displacement; this brings about significant reduction in the LCO amplitude of the cylinder for several set of values of the NES parameters.


2021 ◽  
Author(s):  
Mohammed Ameen Ameen Al Shudeifat ◽  
Adnan Salem Saeed

Abstract The frequency-energy plots (FEPs) of two-degree-of-freedom linear structures attached to piecewise nonlinear energy sink (PNES) are generated here and thoroughly investigated. This study provides the FEP analysis of such systems for further understanding of nonlinear targeted energy transfer (TET) by the PNES. The attached PNES incorporates a symmetrical clearance zone of zero stiffness content about its equilibrium position where the boundaries of the zone are coupled with linear structure by linear stiffness elements. In addition, linear viscous damping is selected to be continuous during PNES mass oscillation. The underlying nonlinear dynamical behaviour of the considered structure-PNES systems is investigated by generating the fundamental backbone curves of the FEP and the bifurcated subharmonic resonance branches using numerical continuation methods. Accordingly, interesting dynamical behaviour of the nonlinear normal modes (NNMs) of the structure-PNES system on different backbones and subharmonic resonance branches has been observed. In addition, the imposed wavelet transform frequency spectrums on the FEPs have revealed that the TET takes place where it is dominated by the nonlinear action of the PNES.


Author(s):  
Xiaoai Jiang ◽  
D. Michael McFarland ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis

We study theoretically and numerically the effect that a nonlinear energy sink (NES) has on the steady state dynamics of a weakly coupled system. The NES possesses essentially nonlinear (nonlinearizable) stiffness nonlinearity of the third degree. We find that, in contrast to the classical linear vibration absorber, the NES is capable of absorbing steady state vibration energy from the linear oscillator over a relatively broad frequency range. This results in localization of the steady state vibration in the NES, away from the directly forced subsystem. For a forward frequency sweep the localized branch of steady state motions is suddenly eliminated by a jump to a linearized low-amplitude motion, whereas, for a backward frequency sweep a reverse jump occurs. The difference in the frequencies of the two jumps introduces a nonlinear hysteresis loop. This work extends to the steady state case of earlier transient passive energy pumping results. The notion of passively transferring vibration energy to an a priori determined NES, weakly attached to a main structure, is novel. The use of essentially nonlinear energy sinks for passively absorbing energy from a linear main structure can form the basis of relatively simple and modular vibration and shock isolation designs of mechanical systems.


Sign in / Sign up

Export Citation Format

Share Document