Dynamic Analysis of a Torsional MEMS Scanner Mirror: Part 1 — Disturbance Analysis Framework

Author(s):  
Faik Can Meral ◽  
Ipek Basdogan

Future optical micro systems such as Micro Electro Mechanical Systems (MEMS) scanners and micro-mirrors will extend the resolution and sensitivity offered by their predecessors. These systems face the challenge of achieving nanometer precision subjected to various disturbances. Predicting the performance of such systems early in the design process can significantly impact the design cost and also improve the quality of the design. Our approach aims to predict the performance of such systems under various disturbance sources and develop a generalized design approach for MEMS structures. In this study, we used ANSYS for modeling and analysis of a torsional MEMS scanner mirror. ANSYS modal analysis results, which are eigenvalues (natural frequencies) and eigenvectors (modeshapes), are used to obtain the state space representation of the mirror. The state space model of the scanner mirror was reduced using various reduction techniques to eliminate the states that are insignificant for the transfer functions of interest. The results of these techniques were compared to obtain the best approach to obtain a lower order model that still contains all of the relevant dynamics of the original model. After the model size is reduced significantly, a disturbance analysis is performed using Lyapunov approach to obtain root-mean-square (RMS) values of the mirror rotation angle under the effect of a disturbance torque. The Lyapunov approach results were validated using a time domain analysis.

2006 ◽  
Vol 129 (10) ◽  
pp. 1023-1030 ◽  
Author(s):  
Faik Can Meral ◽  
Ipek Basdogan

Future optical microsystems, such as microelectromechanical system (MEMS) scanners and micromirrors, will extend the resolution and sensitivity offered by their predecessors. These systems face the challenge of achieving nanometer precision subjected to various disturbances. Predicting the performance of such systems early in the design process can significantly impact the design cost and also improve the quality of the design. Our approach aims to predict the performance of such systems under various disturbance sources and develop a generalized design approach for MEMS structures. In this study, we used ANSYS for modeling and dynamic analysis of a torsional MEMS scanner mirror. ANSYS modal analysis results, which are eigenvalues (natural frequencies) and eigenvectors (mode shapes), are used to obtain the state-space representation of the mirror. The state-space model of the scanner mirror was reduced using various reduction techniques to eliminate the states that are insignificant for the transfer functions of interest. The results of these techniques were compared to obtain the best approach to obtain a lower order model that still contains all the relevant dynamics of the original model. After the model size is reduced significantly, a disturbance analysis is performed using Lyapunov approach to obtain root-mean-square values of the mirror rotation angle under the effect of a disturbance torque. The magnitude levels of the disturbance torque are obtained using an experimental procedure. The disturbance analysis framework is combined with the sensitivity analysis to determine the critical design parameters for optimizing the system performance.


Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
J. A. Tenreiro Machado

This paper studies the chromosome information of twenty five species, namely, mammals, fishes, birds, insects, nematodes, fungus, and one plant. A quantifying scheme inspired in the state space representation of dynamical systems is formulated. Based on this algorithm, the information of each chromosome is converted into a bidimensional distribution. The plots are then analyzed and characterized by means of Shannon entropy. The large volume of information is integrated by averaging the lengths and entropy quantities of each species. The results can be easily visualized revealing quantitative global genomic information.


Author(s):  
M. Behbahani-Nejad ◽  
A. Ghanbarzadeh ◽  
R. Alamian

A transient flow simulation for gas pipelines and networks is proposed. The proposed transient flow simulation is based on the state space equations. The equivalent transfer functions of the nonlinear governing equations are derived for different boundary conditions types. Next, the state space equations are derived from the transfer functions. To verify the accuracy of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as total variation diminishing algorithms, method of lines, and other finite difference implicit and explicit schemes). The effect of the flow inertia is incorporated in this simulation. The accuracy and computational efficiency of the proposed method are discussed for a single gas pipeline and a sample gas network.


Sign in / Sign up

Export Citation Format

Share Document