Active Suspension Systems for Passenger Cars: Operational Modal Analysis as a Tool for the Performance Assessment

Author(s):  
Leonardo Soria ◽  
Arnaldo delli Carri ◽  
Bart Peeters ◽  
Jan Anthonis ◽  
Herman Van der Auweraer
Author(s):  
Rooholah Abdollahpour ◽  
Reza Sharifi Sedeh ◽  
Mohamad Taghi Ahmadian ◽  
Nasser Sadati

Advent of passenger cars has caused people to use them for more efficiency in their performance and wasting less time. Problems, however, still exist in them. For instance, since people travel with cars, their human bodies undergo in fatigue, restlessness, and sometimes health problems. Human body reaction under external vibration depends on the amplitude, frequency, and acceleration of the applied external excitation. These limitations which are usually announced by the bureau of standards imply the necessity of control of amplitude, vibration, frequency, and acceleration received by human body due to cars passing humps and bumps. In this paper, a quarter car model with active suspension system is considered and three control approaches namely optimal control, fuzzy control, and adaptive fuzzy optimal control (AFOC) are applied. Moreover, the performance of different controllers is compared. Application of three different methods indicate that adaptive fuzzy optimal control results in a higher performance in time, acceleration, amplitude, and consequently lower hazards to human body.


Author(s):  
Reza Sharifi Sedeh ◽  
Rooholah Abdollahpour ◽  
Mohamad Taghi Ahmadian ◽  
Nasser Sadati

Using passenger cars for daily traveling include advantages and disadvantages simultaneously; this daily traveling causes variety of road excitations in the form of vibration with different amplitude and acceleration to be imposed on body. Exceeding the standard limitations of these parameters results in fatigue, restlessness, and health problems. In this paper, a quarter-car model with semi-active suspension system is considered and three control approaches are applied to reduce these parameters in the limit of standard. Results show adaptive fuzzy optimal controller has better performance compared to others in controlling the critical health parameters, and can be easily used in future cars for minimizing unexpected hazards imposed on human body due to road excitations.


1995 ◽  
Vol 7 (4) ◽  
pp. 273-273
Author(s):  
Kazuto Seto ◽  

Various attempts have been made from olden days on vehicles for better riding comfort and for improved maneuverability. Past vehicles have achieved vibration isolation performance, which relaxes impact from road surfaces, by means of link mechanisms and passive suspensions consisting of springs and dampers, as well as basic motion performance such as running, turning, and stopping. However, as far as passenger cars are concerned, a passive suspension has its own limitation, and the contradiction that if riding comfort is to be improved at low speeds, the maneuverability during high-speed operations becomes bad has not been solved. Demand of users has become stronger and stronger for vehicles which satisfy riding comfort and maneuverability at the same time. Moreover, as far as trains are concerned, the past technology has increased the vibration of trains as they are operated at higher speeds; thus a drop in riding comfort has been a cause for preventing high-speed operations. Nevertheless, in line with progress in mechatronic technology, active suspensions have been adopted aggressively in automobiles and trains in recent years, and attempts have been started for improving both riding comfort and maneuverability to satisfy demand of users. Some passenger cars have already appeared which are equipped with an active suspension. A similar trend is found in the case of trains; by the introduction of active suspensions, operations of trains on conventional lines at higher speeds are being started. Under these circumstances, this special issue has been created. Although high performance in vehicles may be achieved by means of active suspensions, the problem of increased energy consumption has become a serious issue, which has been brought to the fore with the bursting of the bubble. This problem seems to be solved by saying how effectively semi-active suspensions may be realized. In this special issue, new trends have been taken up, such as vehicle dynamics, design theory on active suspension systems, reduction of engine vibration by optimum design of hydraulic engine mounts, design of control systems for neural networks of semi-active suspension systems, control of variable structures of suspension systems, predictive control, magnetic levitation suspension, etc. It is hoped that these articles will be useful in future research.


2012 ◽  
Vol 19 (5) ◽  
pp. 1099-1113 ◽  
Author(s):  
L. Soria ◽  
B. Peeters ◽  
J. Anthonis ◽  
H. Van der Auweraer

Comfort, road holding and safety of passenger cars are mainly influenced by an appropriate design of suspension systems. Improvements of the dynamic behaviour can be achieved by implementing semi-active or active suspension systems. In these cases, the correct design of a well-performing suspension control strategy is of fundamental importance to obtain satisfying results. Operational Modal Analysis allows the experimental structural identification in those that are the real operating conditions: Moving from output-only data, leading to modal models linearised around the more interesting working points and, in the case of controlled systems, providing the needed information for the optimal design and verification of the controller performance. All these characters are needed for the experimental assessment of vehicle suspension systems. In the paper two suspension architectures are considered equipping the same car type. The former is a semi-active commercial system, the latter a novel prototypic active system. For the assessment of suspension performance, two different kinds of tests have been considered, proving ground tests on different road profiles and laboratory four poster rig tests. By OMA-processing the signals acquired in the different testing conditions and by comparing the results, it is shown how this tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying out a simple, cost-effective road test.


2020 ◽  
Vol 53 (2) ◽  
pp. 14407-14412
Author(s):  
G. BEL HAJ FREJ ◽  
X. MOREAU ◽  
E. HAMROUNI ◽  
A. BENINE-NETO ◽  
V. HERNETTE

Sign in / Sign up

Export Citation Format

Share Document