Wave Field in Fluid Saturated Porous Media Subjected to Excitations of Multiple Energy Sources

Author(s):  
Liming Dai ◽  
Guoqing Wang

This research is to investigate the behavior of elastic waves in porous media consisting of fluid and solid. A new methodology for describing the wave motion of a fluid-saturated porous medium is developed with the establishment of a mathematical wave model. Dynamic equations in the form of displacements of the fluid and solid are derived for analyzing the elastic waves propagating in homogeneous and isotropic porous media, which are subjected to excitations of multiple energy sources. Solutions of the wave equation are developed on the basis of the moving-coordinate method. Numerical simulations of the waves propagating in the porous media with multiple energy sources are also performed for demonstrating the application of the mathematical model developed.

Author(s):  
A. V. Kuznetsov ◽  
A. A. Avramenko

In this paper, a model of bioconvection in a suspension of gyrotactic motile microorganisms in a fluid saturated porous medium is suggested. The microorganisms considered in this paper are heavier than water and gyrotactic behavior results in their swimming towards the regions of most rapid downflow. Because of that, the regions of downflow become denser than the regions of upflow. Buoyancy increases the upward velocity in the regions of upflow and downward velocity in the regions of downflow, thus enhancing the velocity fluctuations. The experiments performed by Kessler (1986) and the numerical results of Kuznetsov and Jiang (2001) indicate that if the permeability of porous medium is sufficiently small it will prevent the development of convection instability. However, for practical purposes, in order to maximize the flux of the cells in the upward direction it is desirable to have the permeability of the porous medium as high as possible. The aim of this paper is to investigate the value of critical permeability. If permeability is smaller than this critical value bioconvection does not occur and microorganisms simply swim in the upward direction.


1957 ◽  
Vol 10 (1) ◽  
pp. 43 ◽  
Author(s):  
JR Philip

The transition from rest to steady motion on the sudden application of a potential gradient to the fluid contained in a saturated porous medium is investigated. An approximate analysis gives the result that the time of the effective establishment of the steady motion is proportional to the permeability and inversely proportional to the kinematic viscosity. Two exact solutions (one of them new) for simple cases suggest that the approximate analysis is remarkably accurate. An analogy between this problem and one in heat conduction makes the relevant results in that field immediately applicable here.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 365
Author(s):  
A. Medina ◽  
F. J. Higuera ◽  
M. Pliego ◽  
G. Gómez

We report a theoretical study to determine the temperature profiles due to the continuous andconstant injection of hot water through a line source, into a homogeneous fluid-saturated porous medium which has had initially a constant temperature T∞. In our treatment we have taken in to account the simultaneous injection of constant fluxes of volume fluid, q, and of heat, φ. By using a far-field description, we found similarity solutions for the dimensionless temperature depending on the Peclet number, P e, as the single parameter of the problem.


2019 ◽  
Vol 9 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Du Xinqiang ◽  
Song Yalin ◽  
Ye Xueyan ◽  
Luo Ran

Abstract Column experiments were conducted to examine the clogging effects of colloids under controlled conditions of solution ionic strength (IS) and porous media roughness. The results showed that colloids in recharge water play an important role in the clogging process of saturated porous media, such that even a small amount of colloid may cause a large reduction in the permeability of the porous medium. Clogging at the pore throat was inferred to be the main reason for the severe permeability reduction of porous media. The characteristics of colloid clogging were clearly influenced by both IS and medium roughness. Recharge water with a higher IS facilitated greater attachment of colloids to the surface of the saturated porous medium, which lead to superficial clogging, while collectors with a rough surface resulted in greater clogging than collectors with a smooth surface.


Sign in / Sign up

Export Citation Format

Share Document