Stability of Bioconvection in Suspensions of Gyrotactic Microorganisms in Porous Media
In this paper, a model of bioconvection in a suspension of gyrotactic motile microorganisms in a fluid saturated porous medium is suggested. The microorganisms considered in this paper are heavier than water and gyrotactic behavior results in their swimming towards the regions of most rapid downflow. Because of that, the regions of downflow become denser than the regions of upflow. Buoyancy increases the upward velocity in the regions of upflow and downward velocity in the regions of downflow, thus enhancing the velocity fluctuations. The experiments performed by Kessler (1986) and the numerical results of Kuznetsov and Jiang (2001) indicate that if the permeability of porous medium is sufficiently small it will prevent the development of convection instability. However, for practical purposes, in order to maximize the flux of the cells in the upward direction it is desirable to have the permeability of the porous medium as high as possible. The aim of this paper is to investigate the value of critical permeability. If permeability is smaller than this critical value bioconvection does not occur and microorganisms simply swim in the upward direction.