Towards Autonomous Cargo Deployment and Retrieval by an Unmanned Aerial Vehicle Using Visual Servoing

Author(s):  
Noah R. Kuntz ◽  
Paul Y. Oh

This paper presents the design and implementation of systems for autonomous tracking, payload pickup, and deployment of a 1/10th scale RC vehicle via a UAV helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a three degree of freedom gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to control the camera pan tilt unit as well as a second pan tilt unit with a hook mounted on the end of the arm. The ability of the pickup system to hook a target is tested by mounting it on the gantry while recorded helicopter velocities are played back by the gantry. A preliminary semi-autonomous deployment system is field tested, where a manually controlled RC car is transported by a UAV helicopter under computer control that is manually directed to GPS waypoints using a ground station.

Author(s):  
Noah R. Kuntz ◽  
Paul Y. Oh

This paper presents the design and testing of systems for autonomous tracking, payload pickup, and deployment of cargo via a UAV helicopter. The tracking system uses a visual servoing algorithm and is tested using open loop velocity control of a 3DOF gantry system with a camera mounted via a pan-tilt unit on the end effecter. The pickup system uses vision to control the camera pan tilt unit as well as a second pan tilt unit with a hook mounted on the end of the arm. The ability of the pickup system to hook a target is tested by mounting it on the gantry while recorded helicopter velocities are played back by the gantry. A preliminary semi-autonomous deployment system is field tested, where a manually controlled RC truck is transported by a UAV helicopter under computer control that is manually directed to GPS waypoints using a ground station.


2021 ◽  
pp. 106891
Author(s):  
Chengbin Chen ◽  
Sifan Chen ◽  
Guangsheng Hu ◽  
Baihe Chen ◽  
Pingping Chen ◽  
...  

Author(s):  
M. R. AL-Obaidi ◽  
M. A. Mustafa ◽  
W.Z.W. Hassan ◽  
N. Azis ◽  
A. H. Sabry ◽  
...  

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">An efficient charging station is a necessity for Unmanned Aerial Vehicle (UAV) systems. However, if that implementation adds more complexity and onboard weight, then that exercise becomes a burden rather than a benefit since UAV's engineers aim to improve efficiency by reducing the energy consumed by the software and hardware of the complete aeronautical system. This article recommends a fully automatic contact charging station for UAVs, which can charge UAVs and thus resolve flight endurance restrictions of the UAV. The ground station consists of square copper plates that are positively and negatively polarized successively in a chessboard with particular sizes to guarantee electric contact at the landing. The design methodology used with the loading station takes into account the differences in UAV orientation once the platform has landed. In addition, this innovation uses independent charging after touchdown. Thus, this technology relaxes common flight times and help to enhance general mission times. This paper presents a unique charging platform in a “chessboard” configuration, which is devised as an interconnecting interface to facilitate the charging process and overcome inaccuracies with the landing. The solution devised in this research requires few components and presents two power source options (solar &amp; mains power). Additionally, this work presents, to the best of our knowledge, a uniquely innovative recharging landing platform, which incidentally requires no additional software or changes to the UAV’s onboard software settings</span><span style="font-size: 9pt; font-family: Arial, sans-serif;">.</span>


Author(s):  
Barlian Henryranu Prasetio ◽  
Ahmad Afif Supianto ◽  
Gembong Edhi Setiawan ◽  
Budi Darma Setiawan ◽  
Imam Cholissodin ◽  
...  

2019 ◽  
Vol 36 (7) ◽  
pp. 1212-1221
Author(s):  
Takahiro Ikeda ◽  
Satoshi Minamiyama ◽  
Shogo Yasui ◽  
Kenichi Ohara ◽  
Akihiko Ichikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document