Multi-Pulse Chaotic Dynamics of the Cantilevered Pipe Conveying Pulsating Fluid

Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Dong-Xing Cao

The multi-pulse orbits and chaotic dynamics of the cantilevered pipe conveying pulsating fluid with harmonic external force are studied in detail. The nonlinear geometric deformation of the pipe and the Kelvin constitutive relation of the pipe material are considered. The nonlinear governing equations of motion for the cantilevered pipe conveying pulsating fluid are determined by using Hamilton principle. The four-dimensional averaged equation under the case of principle parameter resonance, 1/2 subharmonic resonance and 1:2 internal resonance and primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the cantilevered pipe. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the cantilevered pipe conveying pulsating fluid. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the cantilevered pipe are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the pulsating fluid conveying cantilevered pipe.

Author(s):  
Yan Zheng ◽  
Wei Zhang ◽  
Tao Liu

Abstract The researches of global bifurcations and chaotic dynamics for high-dimensional nonlinear systems are extremely challenging. In this paper, we study the multi-pulse orbits and chaotic dynamics of an eccentric rotating composite laminated circular cylindrical shell. The four-dimensional averaged equations are obtained by directly using the multiple scales method under the case of the 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. The system is transformed to the averaged equations. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global homoclinic bifurcations and chaotic dynamics for the eccentric rotating composite laminated circular cylindrical shell. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the eccentric rotating composite laminated circular cylindrical shell are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the eccentric rotating composite laminated circular cylindrical shell.


2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang

This paper investigates the multipulse global bifurcations and chaotic dynamics for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate by using an energy phase method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1 : 2 internal resonance and primary parametric resonance. The energy phase method is used for the first time to investigate the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The paper demonstrates how to employ the energy phase method to analyze the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate, the Shilnikov type multipulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.


Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Dong-Xing Cao

The multi-pulse orbits and chaotic dynamics of the simply supported laminated composite piezoelectric rectangular plates under combined parametric excitation and transverse loads are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motions for the laminated composite piezoelectric rectangular plates are derived from von Karman-type equation and third-order shear deformation laminate theory of Reddy. The four-dimensional averaged equation under the case of primary parametric resonance and 1:2 internal resonances is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plates. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plates. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plates are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plates.


Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Dong-Xing Cao

The multi-pulse heteroclinic orbits and chaotic dynamics of a parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equation of motion for viscoelastic moving belt with the external damping and parametric excitation are determined. The four-dimensional averaged equation under the case of 1:1 internal resonance and primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin’s approach to the partial differential governing equation of motion for viscoelastic moving belt. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, an extension of the Melnikov method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for a parametrically excited viscoelastic moving belt. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse heteroclinic orbits of viscoelastic moving belts are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for a parametrically excited viscoelastic moving belt.


2007 ◽  
Vol 17 (03) ◽  
pp. 851-875 ◽  
Author(s):  
M. H. YAO ◽  
W. ZHANG

The Shilnikov-type multipulse orbits and chaotic dynamics for a simply supported rectangular thin plate under combined parametric and external excitations are studied in this paper for the first time. The rectangular thin plate is subjected to spatially and temporally varying transversal and in-plane excitations, simultaneously. The formulas of the rectangular thin plate are derived from the von Kármán equation and Galerkin's method. The method of multiple scales is used to find the averaged equation in the case of 1:2 internal resonance. Based on the averaged equation, the theory of normal form is used to obtain the explicit expressions of normal form associated with a double zero and a pair of purely imaginary eigenvalues using the Maple program. The dissipative version of the energy-phase method is utilized to analyze the multipulse global bifurcations and chaotic dynamics of a parametrically and externally excited rectangular thin plate. The global dynamical analysis indicates that there exist the multipulse jumping orbits in the perturbed phase space of the averaged equation for a parametrically and externally excited rectangular thin plate. These results show that the chaotic motions of the multipulse Shilnikov-type can occur for a parametrically and externally excited rectangular thin plate. Numerical simulation results are presented to verify the analytical predictions. It is also found from the results of numerical simulation that the Shilnikov-type multipulse orbits exist for a parametrically and externally excited thin plate.


Author(s):  
Wei Zhang ◽  
Ming-Hui Yao ◽  
Dong-Xing Cao

The multi-pulse orbits and chaotic dynamics of the simply supported laminated composite piezoelectric rectangular plates under combined parametric excitation and transverse loads are studied in detail. It is assumed that different layers are perfectly bonded to each other with piezoelectric actuator patches embedded. The nonlinear equations of motions for the laminated composite piezoelectric rectangular plates are derived from von Karman-type equation and third-order shear deformation laminate theory of Reddy. The four-dimensional averaged equation under the case of primary parametric resonance and 1:2 internal resonances is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the laminated composite piezoelectric rectangular plates. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the laminated composite piezoelectric rectangular plates. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the laminated composite piezoelectric rectangular plates are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the simply supported laminated composite piezoelectric rectangular plates.


Author(s):  
Wei Zhang ◽  
Ming-Hui Yao ◽  
Dong-Xing Cao

Multi-pulse chaotic dynamics of a simply supported functionally graded materials (FGMs) rectangular plate is investigated in this paper. The FGMs rectangular plate is subjected to the transversal and in-plane excitations. The properties of material are graded in the direction of thickness. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the FGMs plate are derived by using the Hamilton’s principle. The four-dimensional averaged equation under the case of 1:2 internal resonance, primary parametric resonance and 1/2-subharmonic resonance is obtained by directly using the asymptotic perturbation method and Galerkin approach to the partial differential governing equation of motion for the FGMs rectangular plate. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the FGMs rectangular plate. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the FGMs rectangular plate are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the simply supported FGMs rectangular plate.


2005 ◽  
Vol 15 (12) ◽  
pp. 3923-3952 ◽  
Author(s):  
MINGHUI YAO ◽  
WEI ZHANG

The multipulse Shilnikov orbits and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam are studied in this paper for the first time. The cantilever beam studied here is subjected to a harmonic axial excitation and two transverse excitations at the free end. The nonlinear governing equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations. The resonant case considered here is principal parametric resonance-1/2 subharmonic resonance for the first mode and fundamental parametric resonance-primary resonance for the second mode. The parametrically and externally excited system is transformed to the averaged equation by using the method of multiple scales. From the averaged equation, the theory of normal form is used to find their explicit formulas. Based on normal form obtained above, the dissipative version of the energy-phase method is utilized to analyze the multipulse global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of the cantilever beam. The energy-phase method is further improved to ensure the equivalence of topological structure for the phase portraits. The analysis of global dynamics indicates that there exist the multipulse jumping orbits in the perturbed phase space of the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the multipulse Shilnikov type chaotic motions can occur for the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations are given to verify the analytical predictions. It is also found from the results of numerical simulation in three-dimensional phase space that the multipulse Shilnikov type orbits exist for the nonlinear nonplanar oscillations of the cantilever beam.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Author(s):  
Wei Zhang ◽  
Mei-juan Gao

In this paper, we first analyze the chaotic dynamics of a higher-dimensional nonlinear system for a composite laminated plate in the case of 1:3:3 internal resonances with the theory of normal form and the energy-phase method. The theory of normal form is used to obtain the simpler normal form of the system. The energy-phase method is employed to analyze the multi-pulse chaotic dynamics of the higher-dimensional nonlinear system for a composite laminated plate. Moreover, the numerical simulation is performed to find the multi-pulse chaotic motion of the composite laminated plate. The global theory analysis and the results of numerical simulation demonstrate that the existence of the periodic motions and chaotic motions with the jumping phenomena in the composite laminated plate.


Sign in / Sign up

Export Citation Format

Share Document