Dynamic Motion Generation for Redundant Systems Under External Constraints

Author(s):  
Joo H. Kim ◽  
Karim Abdel-Malek ◽  
Yujiang Xiang ◽  
Jingzhou James Yang ◽  
Jasbir S. Arora

Dynamics of mechanical systems during motion usually involves reaction forces and moments due to the interaction with external objects or constraints from the environment. The problem of predicting the external reaction loads under rigid-body assumption has not been addressed extensively in the literature in terms of optimal motion planning and simulation. In this presentation, we propose a formulation of determining the external reaction loads for redundant systems motion planning. For dynamic equilibrium, the resultant reaction loads that include the effects of inertia, gravity, and general applied loads, are distributed to each contact points. Unknown reactions are determined along with the system configuration at each time step using iterative nonlinear optimization algorithm. The required actuator torques as well as the motion trajectories are obtained while satisfying given constraints. The formulation is applied to several example motions of multi-rigid-body systems such as a simple 3-degree-of-freedom welding manipulator and a highly articulated whole-body human mechanism. The example results are compared with the cases where the reactions are pre-assigned. The proposed formulation demonstrates realistic distribution of external reaction loads and the associated goal-oriented motions that are dynamically consistent.

Author(s):  
Joo H. Kim ◽  
Karim Abdel-Malek ◽  
Yujiang Xiang ◽  
Jingzhou James Yang ◽  
Jasbir S. Arora

Dynamics of mechanical systems during motion usually involves reaction forces and moments due to the interaction with external objects or constraints from the environment. The problem of predicting the external reaction loads under rigid-body assumption has not been addressed extensively in the literature in terms of optimal motion planning and simulation. We propose a formulation of determining the external reaction loads for redundant systems motion planning. For dynamic equilibrium, the resultant reaction loads that include the effects of inertia, gravity, and general applied loads, are distributed to each contact point. Unknown reactions are determined along with the system configuration at each time step using iterative nonlinear optimization algorithm. The required actuator torques as well as the motion trajectories are obtained while satisfying given constraints. The formulation is applied to several example motions of multi-rigid-body systems such as a simple welding manipulator and a highly articulated whole-body human mechanism. The example results are compared with the cases where the reactions are pre-assigned.


Author(s):  
Taeyoung Lee

This paper investigates global uncertainty propagation and stochastic motion planning for the attitude kinematics of a rigid body. The Fokker–Planck equation on the special orthogonal group is numerically solved via noncommutative harmonic analysis to propagate a probability density function along flows of the attitude kinematics. Based on this, a stochastic optimal control problem is formulated to rotate a rigid body while avoiding obstacles within uncertain environments in an optimal fashion. The proposed intrinsic, geometric formulation does not require the common assumption that uncertainties are Gaussian or localized. It can be also applied to complex rotational maneuvers of a rigid body without singularities in a unified way. The desirable properties are illustrated by numerical examples.


Robotica ◽  
2017 ◽  
Vol 36 (3) ◽  
pp. 333-352 ◽  
Author(s):  
Yuan Tian ◽  
Feng Gao

SUMMARYIn this paper, an efficient motion planning method is proposed for a six-legged robot walking on irregular terrain. The method provides the robot with fast-generated free-gait motions to traverse the terrain with medium irregularities. We first of all introduce our six-legged robot with legs in parallel mechanism. After that, we decompose the motion planning problem into two main steps: first is the foothold selection based on a local footstep cost map, in which both terrain features and the robot mobility are considered; second is a whole-body configuration planner which casts the problem into a general convex optimization problem. Such decomposition reduces the complexity of the motion planning problem. Along with the two-step planner, discussions are also given in terms of the robot-environmental relationship, convexity of constraints and robot rotation integration. Both simulations and experiments are carried out on typical irregular terrains. The results demonstrate effectiveness of the planning method.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2021 ◽  
pp. 1-1
Author(s):  
Camilla Tabasso ◽  
Nicola Mimmo ◽  
Venanzio Cichella ◽  
Lorenzo Marconi

Author(s):  
J. Rastegar ◽  
Y. Qin ◽  
Q. Tu

Abstract A novel approach to optimal robot manipulator motion planning for Solid Freeform Fabrication (SFF) by thermal spraying is presented. In this approach, given the desired spatial geometry of the object, the motion of the spray gun relative to a forming platform is synthesized for minimal masking requirements considering the probabilistic nature of the thermal spraying process. The material build-up rate can be planned to achieve the desired distribution of the physical/material properties within the object volume. Examples of optimal motion planning for the generation of some basic solid objects and computer simulation of the effectiveness of the developed methodology are presented.


Sign in / Sign up

Export Citation Format

Share Document