Preliminary In Vivo Capsule Crawler Mobility

Author(s):  
Levin J. Sliker ◽  
Jonathan A. Schoen ◽  
Mark E. Rentschler

Despite revolutionary advances in many fields of medicine, there are no active mobile in vivo devices commercially available, or in use, today. Several research groups are actively looking at a number of mobility methods in a number of lumens, but little commercial work has been done. While robotic surgery is available today thanks to robots such as the da Vinci surgical system, these methods are very expensive, require heavy external equipment, and are still constrained by entry incisions. An alternative approach may be to place the robot completely inside the patient. Such devices may enable non-invasive imaging and diagnostics. These devices may be significantly less expensive than current minimally invasive methods, without extensive support equipment, which may allow them to be also used routinely in the ER/trauma sites and remote locations. This paper explores using mobile capsule crawlers inside the body. Preliminary designs are discussed, and current research efforts into providing contact locomotion using micro-tread tracks are explored including initial drawbar force generation experimental results.

2010 ◽  
Vol 4 (4) ◽  
Author(s):  
Levin J. Sliker ◽  
Xin Wang ◽  
Jonathan A. Schoen ◽  
Mark E. Rentschler

Despite revolutionary advances in many fields of medicine, there are no active mobile in vivo devices commercially available, or in use, today. Several research groups are actively looking at a number of mobility methods in a number of lumens but little commercial work has been done. While robotic surgery is available today, thanks to ex vivo robots, such as the da Vinci surgical system, these methods are very expensive, require heavy external equipment, and are still constrained by entry incisions. An alternative approach may be to place the robot completely inside the patient. Such devices may enable noninvasive imaging and diagnostics. These devices may be significantly less expensive than current minimally invasive methods, without extensive support equipment, which may allow them to be also used routinely in the emergency room (ER)/trauma sites and remote locations. This work explores micropatterned treads that may enable mobile capsule crawlers inside the body. Current research efforts into providing contact locomotion using micro-tread tracks are explored including initial drawbar force generation experimental results, dynamic finite element analysis with these tread designs, and in vivo porcine evaluation and comparison of two leading tread designs.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115881 ◽  
Author(s):  
Nishikant P. Deshmukh ◽  
Hyun Jae Kang ◽  
Seth D. Billings ◽  
Russell H. Taylor ◽  
Gregory D. Hager ◽  
...  

2020 ◽  
Vol 92 (17) ◽  
pp. 11535-11542 ◽  
Author(s):  
Michael F. Keating ◽  
Jialing Zhang ◽  
Clara L. Feider ◽  
Sascha Retailleau ◽  
Robert Reid ◽  
...  

Author(s):  
Braden Millan ◽  
Shavy Nagpal ◽  
Maylynn Ding ◽  
Jason Y. Lee ◽  
Anil Kapoor

Objectives Since the introduction of the first master–slave robotic platform for surgical procedures, there have been ongoing modifications and development of new platforms, but there is still a paucity of commercially available systems. Our study aims to identify all master–slave robotic surgical platforms currently commercially available or in development around the world with applications in urologic surgery. Methods A scoping literature search was performed using PRISMA methodology to identify all relevant publications in English in PubMed, PubMed Central, and Embase, with additional information being obtained from official company websites. Results Ten robotic platforms with either proven or potential application in urologic surgery were identified: the da Vinci surgical system (Intuitive), Senhance surgical system (Transentrix), Versius Surgical (CMR Ltd), Enos surgical system (Titan Medical), Revo –I (Meere Company), MiroSurge (DLR), Avatera System (Avatera Medical), Hugo Surgical Robot (Medtronic), Ottava (J&J, Ethicon, Areus), and Hinotori (Medicaroid Corporation). Conclusions This review highlights the distinct features of emerging master–slave robotic platforms with applications in urologic surgery. Research and development are now focused on finding wider applications, improving outcomes, increasing availability, and reducing cost. Additional research is required comparing newly developed master–slave robotic platforms with those already well established.


ESC CardioMed ◽  
2018 ◽  
pp. 573-577
Author(s):  
Alessia Gimelli ◽  
Riccardo Liga

Single-photon emission computed tomography (SPECT) photons as a medical imaging technique detects the radiation emitted by radioisotopes injected into the body to provide in vivo measurements of regional tissue function. From its introduction in the cardiologic clinical field, nuclear imaging has classically represented the reference technique for the non-invasive evaluation of myocardial perfusion, becoming the most frequently performed imaging modality for the functional assessment of patients with ischaemic heart disease.


Sign in / Sign up

Export Citation Format

Share Document