Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty

Author(s):  
Jianhua Zhou ◽  
Shuo Cheng ◽  
Mian Li

Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, Sequential Quadratic Programing for Robust Optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Jianhua Zhou ◽  
Shuo Cheng ◽  
Mian Li

Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, sequential quadratic programming for robust optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Shaobo Wang ◽  
Xiangyun Qing

Uncertainty is ubiquitous throughout engineering design processes. Robust optimization (RO) aims to find optimal solutions that are relatively insensitive to input uncertainty. In this paper, a new approach is presented for single-objective RO problems with an objective function and constraints that are continuous and differentiable. Both the design variables and parameters with interval uncertainties are represented as affine forms. A mixed interval arithmetic (IA)/affine arithmetic (AA) model is subsequently utilized in order to obtain affine approximations for the objective and feasibility robustness constraint functions. Consequently, the RO problem is converted to a deterministic problem, by bounding all constraints. Finally, nonlinear optimization solvers are applied to obtain a robust optimal solution for the deterministic optimization problem. Some numerical and engineering examples are presented in order to demonstrate the advantages and disadvantages of the proposed approach. The main advantage of the proposed approach lies in the simplicity of the conversion from a nonlinear RO problem with interval uncertainty to a deterministic single-looped optimization problem. Although this approach cannot be applied to problems with black-box models, it requires a minimal use of IA/AA computation and applies some widely used advanced solvers to single-looped optimization problems, making it more suitable for applications in engineering fields.


2019 ◽  
Vol 25 (9) ◽  
pp. 1455-1474 ◽  
Author(s):  
Lei Wang ◽  
Haijun Xia ◽  
Yaowen Yang ◽  
Yiru Cai ◽  
Zhiping Qiu

Purpose The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval uncertainties of load and material parameters based on the technology of 3D printing or additive manufacturing. Design/methodology/approach First, the uncertainty quantification analysis is accomplished by interval Taylor extension to determine boundary rules of concerned displacement responses. Based on the interval interference theory, a novel reliability index, named as the optimization feature distance, is then introduced to construct non-probabilistic reliability constraints. To circumvent convergence difficulties in solving large-scale variable optimization problems, the gradient-based method of moving asymptotes is also used, in which the sensitivity expressions of the present reliability measurements with respect to design variables are deduced by combination of the adjoint vector scheme and interval mathematics. Findings The main findings of this paper should lie in that new non-probabilistic reliability index, i.e. the optimization feature distance which is defined and further incorporated in continuum topology optimization issues. Besides, a novel concurrent design strategy under consideration of macro-micro integration is presented by using the developed RBTO methodology. Originality/value Uncertainty propagation analysis based on the interval Taylor extension method is conducted. Novel reliability index of the optimization feature distance is defined. Expressions of the adjoint vectors between interval bounds of displacement responses and the relative density are deduced. New NRBTO method subjected to continuum structures is developed and further solved by MMA algorithms.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Shuo Cheng ◽  
Jianhua Zhou ◽  
Mian Li

Uncertainty is a very critical but inevitable issue in design optimization. Compared to single-objective optimization problems, the situation becomes more difficult for multi-objective engineering optimization problems under uncertainty. Multi-objective robust optimization (MORO) approaches have been developed to find Pareto robust solutions. While the literature reports on many techniques in MORO, few papers focus on using multi-objective differential evolution (MODE) for robust optimization (RO) and performance improvement of its solutions. In this article, MODE is first modified and developed for RO problems with interval uncertainty, formulating a new MODE-RO algorithm. To improve the solutions’ quality of MODE-RO, a new hybrid (MODE-sequential quadratic programming (SQP)-RO) algorithm is proposed further, where SQP is incorporated into the procedure to enhance the local search. The proposed hybrid approach takes the advantage of MODE for its capability of handling not-well behaved robust constraint functions and SQP for its fast local convergence. Two numerical and one engineering examples, with two or three objective functions, are tested to demonstrate the applicability and performance of the proposed algorithms. The results show that MODE-RO is effective in solving MORO problems while, on the average, MODE-SQP-RO improves the quality of robust solutions obtained by MODE-RO with comparable numbers of function evaluations.


2018 ◽  
Vol 35 (2) ◽  
pp. 580-603 ◽  
Author(s):  
Qi Zhou ◽  
Xinyu Shao ◽  
Ping Jiang ◽  
Tingli Xie ◽  
Jiexiang Hu ◽  
...  

Purpose Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly degrade the overall performance of engineering systems and change the feasibility of the obtained solutions. This paper aims to propose a multi-objective robust optimization approach based on Kriging metamodel (K-MORO) to obtain the robust Pareto set under the interval uncertainty. Design/methodology/approach In K-MORO, the nested optimization structure is reduced into a single loop optimization structure to ease the computational burden. Considering the interpolation uncertainty from the Kriging metamodel may affect the robustness of the Pareto optima, an objective switching and sequential updating strategy is introduced in K-MORO to determine (1) whether the robust analysis or the Kriging metamodel should be used to evaluate the robustness of design alternatives, and (2) which design alternatives are selected to improve the prediction accuracy of the Kriging metamodel during the robust optimization process. Findings Five numerical and engineering cases are used to demonstrate the applicability of the proposed approach. The results illustrate that K-MORO is able to obtain robust Pareto frontier, while significantly reducing computational cost. Practical implications The proposed approach exhibits great capability for practical engineering design optimization problems that are multi-objective and constrained and have uncertainties. Originality/value A K-MORO approach is proposed, which can obtain the robust Pareto set under the interval uncertainty and ease the computational burden of the robust optimization process.


2017 ◽  
Vol 34 (2) ◽  
pp. 420-446 ◽  
Author(s):  
Qi Zhou ◽  
Ping Jiang ◽  
Xinyu Shao ◽  
Hui Zhou ◽  
Jiexiang Hu

Purpose Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval uncertainty can become computationally intractable because the inner level must perform robust evaluation for each design alternative delivered from the outer level. This paper aims to propose an on-line Kriging metamodel-assisted variable adjustment robust optimization (OLK-VARO) to ease the computational burden of previous VARO approach. Design/methodology/approach In OLK-VARO, Kriging metamodels are constructed for replacing robust evaluations of the design alternative delivered from the outer level, reducing the nested optimization structure of previous VARO approach into a single loop optimization structure. An on-line updating mechanism is introduced in OLK-VARO to exploit the obtained data from previous iterations. Findings One nonlinear numerical example and two engineering cases have been used to demonstrate the applicability and efficiency of the proposed OLK-VARO approach. Results illustrate that OLK-VARO is able to obtain comparable robust optimums as to that obtained by previous VARO, while at the same time significantly reducing computational cost. Practical implications The proposed approach exhibits great capability for practical engineering design optimization problems under interval uncertainty. Originality/value The main contribution of this paper lies in the following: an OLK-VARO approach under interval uncertainty is proposed, which can significantly ease the computational burden of previous VARO approach.


Author(s):  
Masataka Yoshimura ◽  
Yu Yoshimura ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

In order to obtain superior design solutions, the largest possible number of design alternatives, often expressed as discrete design variables, should first of all be considered, and the best design solution should then be selected from this wide set of alternative designs. Also, product designs should be initiated from the earliest possible stages, such as the conceptual and fundamental design stages, when discrete rather than continuous design variables have primacy. Although the use of discrete design variables is fundamentally important, this has implications in terms of computational demands and the accuracy of the optimized solution. This paper proposes an optimization method for product designs incorporating discrete design variables, in which hierarchical product optimization methodologies are constructed based on decomposition of characteristics and/or extraction of simpler characteristics. The optimizations are started at the lowest levels of the hierarchical optimization structure, and proceed to the higher levels. The discrete design variables are efficiently selected and optimized as smaller sub-optimization problems at the lowest hierarchical levels, while the optimum solutions for the entire problem are obtained by conventional mathematical programming methods. Practical optimization procedures for machine product optimization problems having several types of discrete design variables are constructed, and some applied examples demonstrate their effectiveness.


Author(s):  
Mian Li ◽  
Shapour Azarm

Real-world engineering design optimization problems often involve systems that have coupled disciplines with uncontrollable variations in their parameters. No approach has yet been reported for the solution of these problems when there are multiple objectives in each discipline, mixed continuous-discrete variables, and when there is a need to account for uncertainty and also uncertainty propagation across disciplines. We present a Multiobjective collaborative Robust Optimization (McRO) approach for this class of problems that have interval uncertainty in their parameters. McRO obtains Multidisciplinary Design Optimization (MDO) solutions which are as best as possible in a multiobjective and multidisciplinary sense. For McRO solutions, the sensitivity of objective and/or constraint functions is kept within an acceptable range. McRO involves a technique for interdisciplinary uncertainty propagation. The approach can be used for robust optimization of MDO problems with multiple objectives, or constraints, or both together at system and subsystem levels. Results from an application of the approach to a numerical and an engineering example are presented. It is concluded that the McRO approach can solve fully coupled MDO problems with interval uncertainty and can obtain solutions that are comparable to an all-at-once robust optimization approach.


Author(s):  
Xiaoping Du ◽  
Wei Chen

Abstract In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effect of variations (or uncertainties). However, the evaluation of feasibility robustness is often a computationally intensive process. Simplified approaches in existing robust design applications may lead to either over-conservative or infeasible design solutions. In this paper, several feasibility-modeling techniques for robust optimization are examined. These methods are classified into two categories: methods that require probability and statistical analyses (i.e., the probabilistic feasibility formulation and the moment matching method) and methods do not require probability and statistical analyses (i.e., the worst case analysis, the corner space evaluation, and the variation pattern method). Using illustrative examples, the effectiveness of each method is compared in terms of its efficiency and accuracy. Constructive recommendations are made to employ different techniques for modeling feasibility robustness under different circumstances. Under the framework of probabilistic robust optimization, we propose to use a most probable point (MPP) based importance sampling method, a method rooted in the field of reliability analysis, for evaluating the feasibility robustness. The advantages of this approach are discussed. Though our discussions are centered on robust design, the principles presented are also applicable for general probabilistic optimization problems. The practical significance of this work also lies in the development of efficient feasibility evaluation methods that can support quality engineering practice, such as the Six Sigma approach that is being widely used in American industry.


Sign in / Sign up

Export Citation Format

Share Document