GPU-Accelerated Computation of Solvation Free Energy for Kinetostatic Protein Folding Simulation

Author(s):  
Morad Behandish ◽  
Pouya Tavousi ◽  
Horea T. Ilieş ◽  
Kazem Kazerounian

A realistic computer simulation of protein folding requires a comprehensive account of interaction energetics, placing a substantial demand on processing power. This paper presents an improved computational framework for protein folding software package PROTOFOLD, that enables efficient computation of solvation free energy effects in addition to Coulombic and van der Waals interactions. Efficient data structures have been utilized to speed-up the sequential running times from O(n2) to O(n), n being the number of atoms. It turns out, however, that an accurate evaluation of molecular surface areas characterizing the solvation effects imposes a computational bottleneck to the entire simulation. Massive computational power offered by Graphics Processing Units (GPU) was exploited to develop a simple and efficient Single-Instruction Multiple-Thread (SIMT) algorithm for the latter step. The running times were monitored for different steps of the folding simulation for different molecular sizes. Significant performance improvements were observed, yielding promising results where numerous iterative runs are needed.

Author(s):  
Pouya Tavousi ◽  
Morad Behandish ◽  
Kazem Kazerounian ◽  
Horea T. Ilieş

Protein structure prediction remains one of the significant challenges in computational biology. We have previously shown that our kinetostatic compliance method can overcome some of the key difficulties faced by other de novo structural prediction methods, such as the very small time steps required by the molecular dynamics approaches, or the very large number of samples required by the sampling based techniques. In this paper we extend the previous free energy formulation by adding the solvent effects, which contribute predominantly to the folding phenomena. We show that the addition of the solvation effects, which complement the existing Coulombic and van der Waals interactions, lead to a physically effective energy function. Furthermore, we achieve significant computational speed-up by employing efficient algorithms and data structures that effectively reduce the time complexity from O(n2) to O(n), n being the number of atoms. Our simulations are consistent with the general behavior observed in protein folding, and show that the hydrophobic atoms tend to pack inside the core of the molecule in an aqueous solvent, while a vacuum environment produces no such effect.


2012 ◽  
Vol 2 (1) ◽  
pp. 4-11
Author(s):  
Amedeo Caflisch ◽  
Peter Hamm

2021 ◽  
Vol 42 (11) ◽  
pp. 787-792
Author(s):  
Alexei Nikitin ◽  
Vladislava Milchevskaya ◽  
Alexander Lyubartsev

Author(s):  
H. Jelger Risselada ◽  
Helmut Grubmüller

AbstractFusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.


Sign in / Sign up

Export Citation Format

Share Document