Experimental Evaluations for the Effects of Amplitude and Frequency of Vibration on the Friction of Coiled Tubing in Hydrocarbon Drilling Operations

Author(s):  
Jamil Abdo ◽  
Idris Al-Anqoudi ◽  
Hamed Al-Sharji

In a hydrocarbon drilling operations, when an axial load is applied beyond a critical value the coiled tubing (CT) will buckle forming sinusoidal wave and with increasing the axial load the CT ultimately goes into a helical configuration. The higher number of contacts between the CT and the wellbore the more friction is introduced. Increasing the CT friction, due to increasing the area of contact with the wellbore, eventually leads to lock-up length beyond which the drilling cannot proceed further. Vibration is understood to be a well-known technique to reduce friction between contacting bodies in many engineering systems. An in-house experimental setup is developed to imitate the wellbore being drilled with the presence of vibrating facility that has the capability to vibrate the CT axially. The setup is employed to examine the effects of amplitude and frequency of vibration on the friction force, between the CT and the wellbore, and on the axial load transfer or the weight on bit (WOB) of the CT. Response surface methodology is used to produce a prediction model to determine the effects of various amplitudes and frequencies the WOB of the CT. The investigations have shown that both amplitude and frequency of vibration have positive effects on reducing friction force and increasing WOB. The actual and predicted optimal designs are also presented in this work.

Author(s):  
Jamil Abdo ◽  
Hamed Al-Sharji

This work examines the buckling behavior of constrained horizontal tubular in a cylinder subjected to axial compression force. Such configurations are of interest to coiled tubing (CT) and conventional hydrocarbon drilling. When compression force is applied beyond a critical value the coiled tubing (CT) will buckle forming sinusoidal wave and with increasing the load the CT ultimately goes into a helical configuration. The friction is introduced due to the contact between the CT and the borehole wall. Increasing the CT friction eventually leads to lock-up length beyond which the drilling cannot proceed further. Vibration is a well-known technique to reduce friction between contacting bodies in many engineering systems. An in-house experimental setup is developed to imitate the wellbore being drilled with the presence of drilling fluids and vibrating facility that has the capability to vibrate the CT axially. The setup is employed to examine the effects of amplitude and frequency of vibration on the axial force transfer and weight on bit (WOB) at normal and high temperature environments. Results show that both amplitude and frequency have significant effects in reducing the friction and they alter the buckling behavior on both normal and high temperature.


Author(s):  
M. Danish Haneef ◽  
Jamil Abdo

A latest development in the drilling industry is the use of coiled tubing for drilling operations (CTD) that has emerged as a viable technique to ensure cost effective and trouble free drilling operations as compared to conventional jointed pipe drilling. The major challenge in CTD is the buckling that initiates as a consequence of it being a long slender tube and friction between the borehole and the tubing is known to be the main cause. This friction causes the CT to buckle sinusoidally and with increasing axial load ultimately to a helical configuration. Sufficient wall contact forces (WCF) are developed at the well bore and tubing interface thus eventually leading to a zero force transfer downhole. Thus a lockup situation is reached, beyond which the drilling cannot proceed further. Vibration is understood to be a well known technique to reduce friction between contacting forces in many engineering systems. This work presents a detailed analysis of factors that have significant influence on wall contact force, friction, lockup depth and hence buckling. A numerical simulation based technique is used to mitigate friction to reduce buckling, by applying axial vibrations. Various frequencies of axial vibrations were applied and their effect on friction and WCF is studied. A significant improvement in lockup depth was recorded while exciting the tube axially.


Author(s):  
Wenming Wang ◽  
Yingchun Chen ◽  
Haoran Li ◽  
Minghao Xiong

Coiled tubing technology can shorten the operating time of offshore oil and gas drilling or repair well, but due to the small stiffness of the coiled tubing, it is easy to cause the buckling in the process of entering the Steel Catenary Riser (SCR). So the research of its axial load transfer characteristics in riser is necessary. In this paper, the external excitation loads of current and ocean waves are analyzed. By building an indoor experiment platform with similarity theory, the influence of axial load transfer characteristics with the same external excitation is studied on different diameter ratio of SCR pipe-in-pipe vibration system. Through the above research, we can reduce the accidents of the riser and coiled tubing, and provide theoretical support and guarantee to the actual operation.


Author(s):  
Yingchun Chen ◽  
Shimin Zhang ◽  
Wenming Wang ◽  
Minghao Xiong ◽  
Hang Zhang

Coiled tubing can be used for steel catenary riser pigging operations to remove wax and other debris attached on the interior of steel catenary riser to recover production and ensure safety. Due to its low rigidity, coiled tubing would deform which might finally damage coiled tubing and steel catenary riser. Thus, in order to ensure safety and reliability of the operation, this article proceeded experimental study on the axial load transfer behavior of a coiled tubing stuck in a steel catenary riser when the coiled tubing has not yet helical buckled. According to the experimental results, the inner pipe’s axial force transfer efficiency is always less than 1; the outer pipe of “unfixed steel catenary riser boundary” would elongate forced by the inner pipe within it, which makes the injected displacement of inner pipe within outer pipe of “unfixed steel catenary riser boundary” bigger than the injected displacement of inner pipe within outer pipe of “fixed steel catenary riser boundary” system at the same force-out; before the inner pipe helical buckles, inner pipe’s force transfer efficiency for unfixed and fixed system can be considered as the same. The research done above might provide important theoretical supports for the steel catenary riser pigging operation.


2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


Sign in / Sign up

Export Citation Format

Share Document