Volume 5: Pipelines, Risers, and Subsea Systems
Latest Publications


TOTAL DOCUMENTS

61
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791849965

Author(s):  
Ali Cetin ◽  
Trond Pytte ◽  
Sveinung Eriksrud

Operation limits for temporary riser system are determined according to some probability of exceedance of a relevant variable. Accordingly, consistent statistical analysis and probability modelling of the data is required. The common industry approach is to rely on the classical narrow-banded Gaussian process assumption when considering time series of variables of interest. Thus, the time series peaks are characterized by means of the Rayleigh distribution and the relevant extreme values are estimated based on this. However, non-linearities present in riser systems may yield non-Gaussian (wide-banded) processes, rendering the classical approach inappropriate. In the present work, an approximate and practical method is presented to address above issue. It is demonstrated that the approximate method is capable of consistently estimating the relevant extreme values, even where the classical method comes short.


Author(s):  
Knut Vedeld ◽  
Håvar Sollund ◽  
Olav Fyrileiv

Pipeline free span design has evolved from basic avoidance criteria in the DNV ’76 rules [1], to fatigue and ultimate limit state considerations in Guideline no. 14 [2]. Modern multimode, multi-span free span design is predominantly performed according to DNV-RP-F105 [3]. In 2006, the latest revision of DNV-RP-F105 [3] was written as a direct result of extensive research, performed due to significant free span challenges in the Ormen Lange pipeline project. DNV-RP-F105 was at the time, and still is, the only pipeline design code giving contemporary design guidance for vortex induced vibrations (VIV) and direct wave loading design for pipelines in free spans. The last revision of DNV-RP-F105 included a few, but highly important advances, particularly the consideration for multi-mode and multi-span pipeline dynamic response behavior. In the 10 years that have followed, no breakthroughs of similar magnitude have been achieved for pipeline free spans, but a large number of incremental improvements to existing calculation methods, and some novel advances in less critical aspects of VIV understanding have been made. As a result, DNV-RP-F105 has recently been revised to account for these advances, which include improved frequency-domain analyses of wave-induced fatigue, a new response model for cross-flow VIV in low Keulegan-Carpenter (KC) regimes in pure waves, new analytical methods for dynamic response calculations of short spans in harsh conditions, and extensive guidance on how to apply the recommended practice for assessment of fatigue and extreme environmental load effects on curved structural members such as spools, jumpers and manifold flexloops. This paper gives an overview of most of the important changes and updates to the new revision of DNV-RP-F105. Case studies are used to demonstrate the importance and effects of the changes made, and to some extent how the revision of DNV-RP-F105 can enhance its applicability and ease of use.


Author(s):  
Feng Wang ◽  
Roger Burke ◽  
Anil Sablok ◽  
Kristoffer H. Aronsen ◽  
Oddgeir Dalane

Strength performance of a steel catenary riser tied back to a Spar is presented based on long term and short term analysis methodologies. The focus of the study is on response in the riser touch down zone, which is found to be the critical region based on short term analysis results. Short term riser response in design storms is computed based on multiple realizations of computed vessel motions with various return periods. Long term riser response is based on vessel motions for a set of 45,000 sea states, each lasting three hours. The metocean criteria for each sea state is computed based on fifty six years of hindcast wind and wave data. A randomly selected current profile is used in the long term riser analysis for each sea state. Weibull fitting is used to compute the extreme riser response from the response of the 45,000 sea states. Long term analysis results in the touch down zone, including maximum bending moment, minimum effective tension, and maximum utilization using DNV-OS-F201, are compared against those from the short term analysis. The comparison indicates that the short term analysis methodology normally followed in riser design is conservative compared to the more accurate, but computationally more expensive, long term analysis methods. The study also investigates the important role that current plays in the strength performance of the riser in the touch down zone.


Author(s):  
Zhenhua Zhang ◽  
Longbin Tao

Slug flow in horizontal pipelines and riser systems in deep sea has been proved as one of the challenging flow assurance issues. Large and fluctuating gas/liquid rates can severely reduce production and, in the worst case, shut down, depressurization or damage topside equipment, such as separator, vessels and compressors. Previous studies are primarily based on experimental investigations of fluid properties with air/water as working media in considerably scaled down model pipes, and the results cannot be simply extrapolated to full scale due to the significant difference in Reynolds number and other fluid conditions. In this paper, the focus is on utilizing practical shape of pipe, working conditions and fluid data for simulation and data analysis. The study aims to investigate the transient multiphase slug flow in subsea oil and gas production based on the field data, using numerical model developed by simulator OLGA and data analysis. As the first step, cases with field data have been modelled using OLGA and validated by comparing with the results obtained using PIPESYS in steady state analysis. Then, a numerical model to predict slugging flow characteristics under transient state in pipeline and riser system was set up using multiphase flow simulator OLGA. One of the highlights of the present study is the new transient model developed by OLGA with an added capacity of newly developed thermal model programmed with MATLAB in order to represent the large variable temperature distribution of the riser in deep water condition. The slug characteristics in pipelines and temperature distribution of riser are analyzed under the different temperature gradients along the water depth. Finally, the depressurization during a shut-down and then restart procedure considering hydrate formation checking is simulated. Furthermore, slug length, pressure drop and liquid hold up in the riser are predicted under the realistic field development scenarios.


Author(s):  
Wenming Wang ◽  
Yingchun Chen ◽  
Haoran Li ◽  
Minghao Xiong

Coiled tubing technology can shorten the operating time of offshore oil and gas drilling or repair well, but due to the small stiffness of the coiled tubing, it is easy to cause the buckling in the process of entering the Steel Catenary Riser (SCR). So the research of its axial load transfer characteristics in riser is necessary. In this paper, the external excitation loads of current and ocean waves are analyzed. By building an indoor experiment platform with similarity theory, the influence of axial load transfer characteristics with the same external excitation is studied on different diameter ratio of SCR pipe-in-pipe vibration system. Through the above research, we can reduce the accidents of the riser and coiled tubing, and provide theoretical support and guarantee to the actual operation.


Author(s):  
Antonio Borges Rodriguez ◽  
Vishal Dantal ◽  
Victor Bjorn Smith ◽  
Roselyn Carroll

Deep-water developments rely on pipeline and riser systems to transfer hydrocarbon products to floating facilities or potentially longer tie-back pipelines to shallow water platforms/onshore facilities. Depending on the nature of the product and operational conditions, the pipeline and riser system design may need to consider a range of dynamic processes during operation such as (i) controlled lateral buckling of the pipeline in order to relieve excessive constrained axial forces induced by temperature and pressure changes in the system; (ii) the accumulation of pipeline axial displacement or ‘walking’; and (iii) evolution of the pipe-soil interaction at the riser seabed touchdown point due to the dynamic behaviour of the riser. Under these conditions, the reliable structural assessment of the pipeline system relies upon accurate assessment of the pipeline-soil interaction (PSI), from the initial lay embedment of the pipeline to the evolution of the lateral and axial response over the lifetime of the facilities. Accurate assessment of these PSI parameters requires adequate characterisation of the seabed topography, seabed processes (e.g. geohazards) and the soil properties. This paper proposes ways for efficient planning of the geophysical and geotechnical site investigation activities and subsequent soil element and physical model testing for the assessment of relevant PSI parameters in deep-water.


Author(s):  
Caio C. P. Santos ◽  
Celso P. Pesce ◽  
Guilherme R. Franzini ◽  
Olaf O. Otte Filho

Focusing on the integrity of umbilical cable components during the laying operation, particularly on hoses integrity, this paper assesses displacement fields on umbilical cable cross-sections by means of a special crushing test setup. Using a high resolution Digital Image Correlation system (DIC), experiments with two umbilical cables are carried out in a 250 kN mechanical tests rig. Besides measuring the components displacements, applied crushing forces and shoes displacements are acquired. The experimental samples are taken from two HCR-hoses umbilical cables, which have been cases of study of a finite element analysis methodology, recently proposed and presented in OMAE2015, [12]. Experimental analysis and a theoretical-experimental correlation are presented, for both umbilical cables.


Author(s):  
Diego A. Lorio ◽  
Facundo J. Wedekamper ◽  
Fabiano Bertoni ◽  
Facundo S. Lopéz ◽  
George C. Campello ◽  
...  

The offshore industry has presented an increasing demand over the last few decades, requiring the production in deep water fields. The end fittings (EF) are critical points within the production system. Therefore, structural and fatigue analyses are essential in the EF design, making it necessary to know the stress distribution experienced by the armor wires along the EF. Numerical and analytical models are often used in order to assess the stress state. However, characteristics like geometries, materials and interactions must be previously known in order to apply these models. The purpose of this work was to analyze the arithmetic mean surface roughness (Ra) and to determine the friction coefficient (μ) for two types of armor wires when in contact with resin used to fill the EF. The resin used in the interaction with the armor wires was an epoxy filled with metallic particles. For the experimental analysis straight carbon steel armor wires with different cross-sections, typically used in 2.5″ and 8″ flexible pipes were used. Surface profile was obtained for each wire by repeated measurements along two lines over each surface. A total of three repetitions were performed in each measure line. Longitudinal roughness was determined through these profiles. Finally, friction coefficients were obtained experimentally by means of a device that allows to simulate the wire pullout and sliding process. In this device, two epoxy pads were put in contact with the surface of the analyzed wire sample, and rigid bodies in contact with the pads were used to ensure that the normal load applied is transmitted uniformly through the contact surface. The displacement rate, contact pressure between the surface of the wire and the epoxy resin pads, and axial force were recorded. The roughness in the longitudinal direction of the wires was analyzed through descriptive statistic and compared by Student’s “t” test. The highest values were obtained on wires with larger sections. This behavior is exposed on the results obtained for the friction coefficient as a function of the contact pressure. Friction coefficient for both wires was analyzed and compared using a Mann-Whitney U test. Both friction coefficients have a positive slope, indicating a small increase as the contact pressure raise. The significance value obtained for the means comparisons was p = 0.0001 and confirms that the average friction coefficient of the two wires are really different. Because of that, we conclude that is necessary to treat the EF project for different flexible pipes differentially.


Author(s):  
Jiayue Liu ◽  
Mehrdad Kimiaei ◽  
Mark Randolph

Steel Catenary Risers (SCRs) provide a technically feasible and commercially efficient solution for the offshore field developments in deep waters. Fatigue design of SCRs in the touchdown zone (TDZ) is among the most complicated engineering challenges in riser design. The cyclic interaction of the riser with seabed leads to a number of complex nonlinear behaviors including soil suction, separation of the riser from the soil, trench formation and degradation of soil resistance during cyclic loading. Accurate simulation of the riser-soil interaction has significant effects on the fatigue performance in the TDZ. Few hysteretic nonlinear riser-soil interaction models have recently been introduced and some of them have been implemented in commercial software packages for analysis and design of riser systems. Due to complexity of the models and also limited access to special software packages with in-built nonlinear soil models, traditional simple linear soil models are still being used widely for riser analysis, in particular for fatigue design. In this paper, one of the existing nonlinear hysteretic seabed model, already been used in a commercial analysis program OrcaFlex [1], has been implemented into general finite element software Abaqus [2], through the coding of a user defined element (UEL) subroutine. The paper documents the implementation of UEL into Abaqus and the establishment of global riser model for both static and dynamic analysis on which the pipe is modelled efficiently as series of unidirectional beam elements from floater to seabed, resting on a bed of nonlinear springs. Longitudinal friction between pipe and seabed has also been considered. A series of simulations are performed to illustrate the capabilities of the model. All these results have good agreement with those from OrcaFlex. Results indicate that the proposed UEL is capable of modelling nonlinear riser-soil interaction phenomena and has been verified to be a cost-effective alternative to OrcaFlex in terms of global analysis of SCRs. In addition, as an open source code, UEL provides the required tool for future development on nonlinear soil models. A new type of nonlinear soil with bilinear soil shear strength is modeled and its effect on structural performances of SCRs is investigated.


Author(s):  
Magnus Komperød

Bitumen is commonly used as anticorrosion protection for armor wires in subsea power cables, umbilicals, and power umbilicals. Bitumen’s viscoelastic behavior influences the cable’s mechanical properties. The present paper derives a simple, analytical model of bitumen-coated armor wires. The model calculates the axial stresses of the armor wires and the armor wires’ contribution to the cable’s bending stiffness. The model shows that there is a phase shift between the sinusoidal curvature oscillations and the corresponding armor wire stresses and cable bending moment. Two examples show that the armor wire stresses and the cable’s bending stiffness are strongly temperature-dependent. The purpose of the novel model is to calculate bending stiffness, fatigue stresses, and capacity (allowed combinations of axial cable tension and cable bending curvature) more accurately and to study these variables’ sensitivity to temperature and frequency. The model may also be included in calculations of bitumen’s influence on VIV damping.


Sign in / Sign up

Export Citation Format

Share Document