outer pipe
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Grégory Alexandre Toguyeni ◽  
Jens Fernandez-Vega ◽  
Richard Jones ◽  
Martin Gallegillo ◽  
Joachim Banse

Abstract A solution to prevent liner wrinkling in Mechanically Lined Pipes (MLP) with a standard 3.0mm thick liner during reeling, without the use of pressurisation, has been developed in the form of the GluBi® lined pipe. The liner being adhesively bonded to the outer pipe, its integrity is maintained despite the global plastic strain applied by the installation method. This new linepipe product has been qualified for offshore use through testing accompanied by a detailed Finite Element Analysis programme to fully capture the pipe and adhesive behaviours under and range of temperatures and loading conditions. The objective of this analysis program was to investigate the reelability of the GluBi® pipe. The instalability was defined as the capability of the pipe to tolerate cyclic plastic deformation representative of a typical pipeline installation by reeling without the formation of wrinkling of the CRA liner, and to maintain the integrity of the adhesive layer, particularly near the weld overlay at the pipe ends. Important areas of the GluBi® pipe design are the pipe extremities, particularly the transition between the liner and the weld overlay length. A detailed Finite Element model of the pipe was created. It captured all stages of the pipe manufacturing: pipe lining, hydrostatic expansion, adhesive curing, overlay weld deposition and reeling simulation. The pipe modelled was 312.1mm OD × 19.7mm WT SMLS 450 with a nominal 3.0mm thick Alloy 625 liner. An important validation work was performed to obtain a precise material response of the adhesive layer between liner and outer pipe. The adhesive mechanical properties were thus assessed in shearing and peeling over a range of temperatures covering all possible manufacturing and installation conditions. The model's elements and adhesive property modelling were validated against physical test results. Sensitivity analyses were done on the adhesive curing temperature, the geometry of the adhesive transition between the liner and the overlay weld at the pipe ends and on the liner thickness. The model was subjected to reeling simulation corresponding to Subsea 7's reel-lay vessels. The liner's integrity post reeling was assessed according to a range of acceptance criteria. These studies made it possible to establish parameter ranges for the safe installation of the linepipe.


2021 ◽  
Author(s):  
Christian Geertsen ◽  
Steve Langford ◽  
Colin McKinnon ◽  
Fred McKinnon ◽  
Vicki Niesen ◽  
...  

Objectives/Scope The project was a 2km, electrically heat-traced, subsea pipe-in-pipe (PIP) system for transportation of a bitumen-like material across a shipping channel. Due to the viscosity of the bitumen, it must be transported at a minimum of 160°C; has a normal pipeline operating temperature of 200°C; and a design temperature is 228°C. Methods, Procedures, Process Due to the high operating temperature, pre-stressing and backfilling the PIP was required to lock in stresses at an intermediate pre-stressing temperature. The electrical heat-trace wires (installed to heat up the inner pipe and prevent setting of the bitumen during cooldowns) were used to achieve this pre-stressing during the fabrication process. The heating schedule causes high stress levels and require advanced engineering analyses to model the behaviour of the inner and outer pipe during the fabrication, installation, pre-stressing, and operation. The complex loading history of the inner pipe and the expansion spools was included in the global 3D, finite element (FE) models that were used to validate the pipeline profile, backfilling, pre-stressing temperature, and sequence of operations. Results, Observations, Conclusions The complex buckling behaviour of the inner pipe is presented and shown to be within DNV GL OS-F- 101 code limits. The end expansion during the various stages of pre-stressing is presented and compared to observed behaviour. The loads and stresses in the bulkheads are presented and shown to be acceptable. The analysis demonstrates that the pipeline system can be safely installed and operated up to the maximum design temperature of 228°C. Novel/Additive Information The project used pre-stressing by heating the inner pipe to an intermediate temperature before coupling the inner pipe to the outer pipe. The purpose of the pre-stressing was to manage the high axial stresses making it feasible to achieve the high design temperature of 228°C. Pre-expanding of the expansion spools at either end of the subsea pipelines was also used due to the space limitations. Innovative engineering analysis and construction methods were used to ensure the integrity of the inner pipe during the pre-stressing process and operation.


2021 ◽  
Vol 874 ◽  
pp. 165-170
Author(s):  
Sri Wuryanti ◽  
Tina Mulya Gantina ◽  
Indriyani

The research objective is to assemble a convection test system which acts as a heat exchanger (HE) and test its applicability using ethylene glycol. A Double Pipe (DP)-type HE consists of an inner pipe surrounded by an outer pipe (annulus) whereas a Coil-type HE composed of a coil surrounded by an outer pipe. Water flows through the outer pipe in both types of HE, while ethylene glycol flows through the inner piper or coil. HE in combination with other components (such as) forms a convection test system. The applicability of the system was tested to determine the heat transfer coefficient of ethylene glycol in a DP-type and Coil-type HEs. After that, the heat transfer rate was calculated and compared. The results show that the heat transfer coefficient in the DP-type HE is the lowest at 12.2 W/m2 oC and the highest at 26.8 W/m2 oC; and the corresponding heat transfer rate is the lowest at 8.3 W and the highest is 56.3 W. In comparison, for Coil-type HE, the lowest heat transfer coefficient is 38.9 W/m2 oC and the highest is 66.2 W/m2 oC which correspond to the heat transfer rate 19.9 W at the lowest and 225 W at the highest.


2020 ◽  
pp. 20-31
Author(s):  
A. A Burenin ◽  
A. V Tkacheva

The work aims at solving the problem of the theory of unsteady thermal stresses simulating the assembling of the two-layer elastoplastic pipe using the shrink fit (Gadolin problem). The plastic flow condition is taken in the form of a piecewise linear condition of maximum reduced stresses (the Ishlinsky - Ivlev condition) with a parabolic yield point depending on temperature. It is shown that when solving the mechanical part of a disconnected problem of the theory of temperature stresses, the calculations of reversible and irreversible deformations and stresses can be carried out numerically, i.e. analytically without resorting to approximate calculation procedures and, therefore, without discretizing the computational domains. We present a diagram of the emergence and disappearance of plastic flow regions under the assembly conditions and its subsequent cooling. With a different choice of problem parameters, some plastic regions may not appear. However, it is impossible to obtain other areas of plastic flow by changing the geometry of the problem, properties of assembly materials, and the level of heating. This is the adequacy of the calculations. Only those plastic areas that are shown in the diagram appear and disappear. In contrast to the classical case of uniform heating of the outer pipe, this article deals with a widely used case of an uneven heating of the outer pipe from the inner surface. In this case, irreversible deformations are calculated, and then taken into account, which originated in the pipe material before the moment of landing. A comparison of the distribution of residual stresses obtained during the uniform and non-uniform heating of the outer pipe is given. As a result, the interference with the uniform heating exceeds the interference formed with the non-uniform heating of the pipe.


Author(s):  
Farhana Afroz ◽  
Muhammad A.R. Sharif

Abstract Heat transfer from an isothermally hot flat surface due to swirling coaxial turbulent jet impingement is investigated numerically. The coaxial jet construction consists of implanting a thin-walled round tube inside a coaxial outer pipe. Two different fluid streams or jets, having different average velocities, flow through the inner tube, and the annular space between the inner tube and the outer pipe. The ratio of the average velocities of the jets, the ratio of the pipe diameters, the jet exit Reynolds number, the strength of the swirl, and the separation distance from the jet exit to the impingement surface are the main parameters for this flow configuration. The effects of the swirl strength on the jet impingement heat transfer at the target surface are investigated by computing the flow and thermal fields for various combinations of the problem parameters. The presented results contain the plots of the flow streamlines, the contours of the temperature, the contours of the swirl velocity, as well as the distribution of the local and average Nusselt number on the impingement surface. It is found that, compared to the single round jet, the coaxial jet produces enhanced and more uniform heat transfer at the heated surface. The jet-spreading and mixing are affected by the imposed jet swirl which modifies the heat transfer process. Thus, the heat transfer compared to a non-swirling jet is either enhanced or diminished depending on the combination of the problem parameters.


Author(s):  
Cong Guangpei ◽  
Sun Yujiang ◽  
Lv Guanglei ◽  
Yunrong Lv ◽  
Shuxia Fu

Abstract The erect pipe is a dangerous one with a special double concentric pipes, in which the inner pipe and outer pipe are both corroded on the offshore platform so that a effective corrosion inspection is needed to measure the thinning to the inner pipe and outer pipe at the same time. In addition, because of the narrow space in the offshore platform, it is difficult for the digital X-ray tangential photography (DR) to be implemented during the operation because of the larger X-ray dose that is enough to threaten the personal safety according to the standards in China. Hence, a special inspection tech is demanded to obtain the wall thicknesses of erect pipe which is the most important information to the corrosion management. In this article, A new measuring tech is proposed for the concentric multi-pipe structure to dissolve the bottleneck on the inspection of the offshore erect pipeline. Through the tangential scanning and a wall boundary identifying algorithm, the tech can accurately measure the wall thicknesses of erect pipe, and the ray dose can also be decreased about to the one thousandth of traditional DR, which can guarantee the safety of a inspection and monitoring during the operation in a narrow space as the offshore platform. Besides, the low dose of ray doesn’t influence the accuracy of the measurement which can still be kept into 0.2mm according to the theoretical analysis and experimental data.


Author(s):  
Ilias Gavriilidis ◽  
Spyros A. Karamanos

Abstract An economical method to protect offshore pipelines against corrosive ingredients of hydrocarbons is a double-walled (also called “lined” or “bi-metallic”) pipe, in which a thick-walled low-alloy carbon steel (“outer pipe”) is lined internally with a thin layer (“liner pipe”) from a corrosion resistant alloy material. During the deep-water installation, a lined pipe is subjected to severe plastic loading, which may result in detachment of the liner pipe from the outer pipe forming short-wave wrinkles, followed by local buckling. In the current study, alternative lined pipe manufacturing processes are investigated, including elastic, plastic hydraulic and thermo-hydraulic expansion of the outer pipe, for different initial gaps between the two pipes. The problem is solved numerically, accounting for geometric non-linearities, local buckling phenomena and elastic-plastic material behaviour for both the liner and outer pipe. Two types of numerical models are developed, a quasi-two-dimensional model, examining the mechanical bonding between the pipes, and a three-dimensional model, repeating the manufacturing process and investigating its effect on the mechanical behaviour of a lined pipe subjected to monotonic bending. In addition, the influence of initial geometric imperfections on liner pipe buckling is investigated, showing the imperfection sensitivity of the lined pipe bending behaviour, for each fabrication process.


Author(s):  
Quanzhao Sun ◽  
Guolai Yang ◽  
Jianli Ge ◽  
Baochun Lu ◽  
Yanming Song

It is widely known that a bimetal-pipe can be produced by internal hydraulic expansion. An inevitable limitation of which is that the elastic recovery of the outer pipe should be greater than that of the inner pipe when the forming pressure is released. And the existing techniques usually result in plastic deformation of the inner pipe. Considering the circumstance that elastic recovery of the inner pipe is greater than that of the outer pipe, or only elastic deformation in the inner pipe is allowed, an analytical model was developed to investigate the forming process of bimetal-pipes by external hydraulic contraction. The deformation compatibility condition of the bimetal-pipe was obtained according to the deformation rule. The formula relating the applied external hydraulic pressure and the residual contact pressure between the inner and the outer pipes was derived, and the lower and upper limits of the external hydraulic forming pressures were studied. A two-dimensional finite element analysis of the hydraulic contraction forming process of the bimetal-pipe was conducted. The comparison between the theoretical results and the finite element solutions shows that they are in good agreement. The presented methodology can be used in design and manufacturing of bimetal-pipes where the forming pressure should be applied on the outside surface.


Sign in / Sign up

Export Citation Format

Share Document