A Novel Micro Aerial Vehicle Design: The Evolution of the Omnicopter MAV

Author(s):  
Yangbo Long ◽  
Andreas Gelardos ◽  
David J. Cappelleri

This paper presents an evolution on the configuration of a novel micro aerial vehicle (MAV) design, the Omnicopter MAV. The first generation Omnicopter prototype has an actuation system with eight degrees of freedom (DOFs) consisting of 5 brushless direct current (BLDC) motors and 3 servo motors. It is composed of a carbon fiber rod built airframe, 2 central counter-rotating coaxial propellers for thrust and yaw control, and 3 perimeter-mounted electric ducted fans (EDFs) with servo motors performing thrust vectoring. During the development of the second generation prototype, we simplified and 3D printed the frame to increase stiffness, robustness and manufacturability, and reduced the actuation DOFs from 8 to 7 by removing the top propeller and using just the bottom one for yaw control to improve performance. Flight controller and control allocator designs and test flight results for this new configuration are presented in this paper.

2021 ◽  
Vol 16 (6) ◽  
pp. 066019
Author(s):  
Shane Kyi Hla Win ◽  
Luke Soe Thura Win ◽  
Danial Sufiyan ◽  
Shaohui Foong

Abstract The monocopter is a type of micro aerial vehicle largely inspired from the flight of botanical samaras (Acer palmatum). A large section of its fuselage forms the single wing where all its useful aerodynamic forces are generated, making it achieve a highly efficient mode of flight. However, compared to a multi-rotor of similar weight, monocopters can be large and cumbersome for transport, mainly due to their large and rigid wing structure. In this work, a monocopter with a foldable, semi-rigid wing is proposed and its resulting flight performance is studied. The wing is non-rigid when not in flight and relies on centrifugal forces to become straightened during flight. The wing construction uses a special technique for its lightweight and semi-rigid design, and together with a purpose-designed autopilot board, the entire craft can be folded into a compact pocketable form factor, decreasing its footprint by 69%. Furthermore, the proposed craft accomplishes a controllable flight in 5 degrees of freedom by using only one thrust unit. It achieves altitude control by regulating the force generated from the thrust unit throughout multiple rotations. Lateral control is achieved by pulsing the thrust unit at specific instances during each cycle of rotation. A closed-loop feedback control is achieved using a motion-captured camera system, where a hybrid proportional stabilizer controller and proportional-integral position controller are applied. Waypoint tracking, trajectory tracking and flight time tests were performed and analyzed. Overall, the vehicle weighs 69 g, achieves a maximum lateral speed of about 2.37 m s−1, an average power draw of 9.78 W and a flight time of 16 min with its semi-rigid wing.


2010 ◽  
pp. 77-93 ◽  
Author(s):  
Kenzo Nonami ◽  
Farid Kendoul ◽  
Satoshi Suzuki ◽  
Wei Wang ◽  
Daisuke Nakazawa

2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Anthony Oliveira Pinto ◽  
Harrison Neves Marciano ◽  
Vinicius Pacheco Bacheti ◽  
Mauro Sergio Mafra Moreira ◽  
Alexandre Santos Brandao ◽  
...  

2010 ◽  
Vol 18 (7) ◽  
pp. 679-690 ◽  
Author(s):  
Thomas Rakotomamonjy ◽  
Mustapha Ouladsine ◽  
Thierry Le Moing

2012 ◽  
Vol 33 (1-2) ◽  
pp. 21-39 ◽  
Author(s):  
Lorenz Meier ◽  
Petri Tanskanen ◽  
Lionel Heng ◽  
Gim Hee Lee ◽  
Friedrich Fraundorfer ◽  
...  

Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Niko Giannakakos ◽  
Ayse Tekes ◽  
Tris Utschig

Abstract Mechanical engineering students often learn the fundamentals of vibrations along with the time response of underdamped, critically damped, and overdamped systems in machine dynamics and vibrations courses without any validation or visualization through hands-on experimental learning activities. As these courses are highly theoretical, students find it difficult to connect theory to practical fundamentals such as modeling of a mechanical system, finding components of the system using experimental data, designing a system to achieve a desired response, or designing a passive vibration isolator to reduce transmitted vibrations on a primary system. Further, available educational laboratory equipment demonstrating vibrations, dynamics and control is expensive, bulky, and not portable. To address these issues, we developed a low-cost, 3D printed, portable laboratory equipment (3D-PLE) system consisting of primary and secondary carts, rail, linear actuator, Arduino, and compliant flexures connecting the carts. Most of the educational systems consist of a mass limited to 1DOF motion and multi-degrees of freedom systems can be created using mechanical springs. However, in real-world applications oscillations in a system are not necessarily due to mechanical springs. Anything flexible, or thin and long, can be represented by a spring as seen in torsional systems. We incorporated 3D printed and two monolithically designed rigid arms connected with a flexure hinge of various stiffness. The carts are designed in a way such that two flexible links can be attached from both sides and allow more loads to be added on each cart. The system can be utilized to demonstrate fundamentals of vibrations and test designs of passive isolators to dampen the oscillations of the primary cart.


Sign in / Sign up

Export Citation Format

Share Document