Single-Degree-of-Freedom Rigidly Foldable Origami Flashers

Author(s):  
Robert J. Lang ◽  
Spencer Magleby ◽  
Larry Howell

We present the design for a family of deployable structures based on the origami flasher that are rigidly foldable, i.e., foldable with revolute joints at the hinges and planar rigid faces, and that exhibit a single degree of freedom in their motion. These structures may be used to realize highly compact deployable mechanisms.

2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Robert J. Lang ◽  
Spencer Magleby ◽  
Larry Howell

We present the design for a family of deployable structures based on the origami flasher, which are rigidly foldable, i.e., foldable with revolute joints at the creases and planar rigid faces. By appropriate choice of sector angles and introduction of a cut, a single degree-of-freedom (DOF) mechanism is obtained. These structures may be used to realize highly compact deployable mechanisms.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Jianyang Zhu ◽  
Xiaozhi Qi

This paper proposes a new family of single degree of freedom (DOF) deployable mechanisms derived from the threefold-symmetric deployable Bricard mechanism. The mobility and geometry of original threefold-symmetric deployable Bricard mechanism is first described, from the mobility characterstic of this mechanism, we show that three alternate revolute joints can be replaced by a class of single DOF deployable mechanisms without changing the single mobility characteristic of the resultant mechanisms, therefore leading to a new family of Bricard-derived deployable mechanisms. The computer-aided design (CAD) models are used to demonstrate these derived novel mechanisms. All these mechanisms can be used as the basic modules for constructing large volume deployable mechanisms.


Author(s):  
Yan Chen ◽  
Huijuan Feng ◽  
Jiayao Ma ◽  
Rui Peng ◽  
Zhong You

The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.


Author(s):  
Huang Hailin ◽  
Li Bing

In this paper, we present the concept of designing flapping wing air vehicle by using the deployable mechanisms. A novel deployable 6R mechanism, with the deploying/folding motion of which similar to the flapping motion of the vehicle, is first designed by adding two revolute joints in the adjacent two links of the deployable Bennett linkage. The mobility of this mechanism is analyzed based on a coplanar 2-twist screw system. An intuitive projective approach for the geometric design of the 6R deployable mechanism is proposed by projecting the joint axes on the deployed plane. Then the geometric parameters of the deployable mechanism can be determined. By using another 4R deployable Bennett connector, the two 6R deployable wing mechanisms can be connected together such that the whole flapping wing mechanism has a single degree of freedom (DOF).


2005 ◽  
Vol 127 (2) ◽  
pp. 249-256 ◽  
Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instant center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom indeterminate linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.


Author(s):  
David E. Foster ◽  
Gordon R. Pennock

This paper presents graphical techniques to locate the unknown instantaneous centers of zero velocity of planar, single-degree-of-freedom, linkages with kinematic indeterminacy. The approach is to convert a single-degree-of-freedom indeterminate linkage into a two-degree-of-freedom linkage. Two methods are presented to perform this conversion. The first method is to remove a binary link and the second method is to replace a single link with a pair of links connected by a revolute joint. First, the paper shows that a secondary instantaneous center of a two-degree-of-freedom linkage must lie on a unique straight line. Then this property is used to locate a secondary instant center of the single-degree-of-freedom linkage at the intersection of two lines. The two lines are obtained from a purely graphical procedure. The graphical techniques presented in this paper are illustrated by three examples of single-degree-of-freedom linkages with kinematic indeterminacy. The examples are a ten-bar linkage with only revolute joints, the single flier eight-bar linkage, and a ten-bar linkage with revolute and prismatic joints.


2016 ◽  
Vol 8 (5) ◽  
Author(s):  
Saleh M. Almestiri ◽  
Andrew P. Murray ◽  
David H. Myszka ◽  
Charles W. Wampler

This paper extends the general method to construct a singularity trace for single degree-of-freedom (DOF), closed-loop linkages to include prismatic along with revolute joints. The singularity trace has been introduced in the literature as a plot that reveals the gross motion characteristics of a linkage relative to a designated input joint and a design parameter. The motion characteristics identified on the plot include a number of possible geometric inversions (GIs), circuits, and singularities at any given value for the input link and the design parameter. An inverted slider–crank and an Assur IV/3 linkage are utilized to illustrate the adaptation of the general method to include prismatic joints.


Author(s):  
Y Chen ◽  
Z You

This paper presents a method of building large mobile assemblies using the Bennett linkage. The method is based on a basic single-layer layout consisting of overlapping 4 R loops, each of which is a Bennett linkage. The assemblies created have a single degree of freedom, and are overconstrained and scaleable, allowing unlimited extension by repetition. In general, they deploy into a circular or non-circular cylindrical profile. The joints of the assemblies move spirally on the surface during deployment. Under some particular geometrical conditions, the profiles of the assemblies can become arch-like or flat. Moreover, the single-layer assemblies can be extended to form multi-layer mechanisms, even mobile masts. The paper shows the great versatility of the Bennett linkage and demonstrates that the century-old invention can play an important role in the construction of deployable structures.


Sign in / Sign up

Export Citation Format

Share Document