Solution Region Synthesis Method for Six Positions Synthesis of 5-SS Spatial Linkage

Author(s):  
Jianyou Han ◽  
Guangzhen Cui ◽  
Junjie Hu

This paper presents a systematic approach to perform the dimensional synthesis of spatial 5-SS (spherical-spherical) link-ages for six specified positions of the end-effector. The dimensional synthesis equations for a SS link are formulated and solved. We synthesize five SS links to connect the base and end-effector, and then obtain the one-degree-of-freedom spatial 5-SS linkage, which can move through six specified positions. We use the solution region method to build the planar solution region expressing the linkages, due to there are infinite linkages for six positions synthesis. It is convenient to select the linkages from the solution region for designers. The applicability of the proposed approach is illustrated by the example.

2013 ◽  
Vol 5 (4) ◽  
Author(s):  
K. Azizian ◽  
P. Cardou

This paper presents a method for the dimensional synthesis of fully constrained spatial cable-driven parallel mechanisms (CDPMs), namely, the problem of finding a geometry whose wrench-closure workspace (WCW) contains a prescribed workspace. The proposed method is an extension to spatial CDPMs of a synthesis method previously published by the authors for planar CDPMs. The WCW of CDPMs is the set of poses for which any wrench can be produced at the end-effector by non-negative cable tensions. A sufficient condition is introduced in order to verify whether a given six-dimensional box, i.e., a box covering point-positions and orientations, is fully inside the WCW of a given spatial CDPM. Then, a nonlinear program is formulated, whose optima represent CDPMs that can reach any point in a set of boxes prescribed by the designer. The objective value of this nonlinear program indicates how well the WCW of the resulting CDPM covers the prescribed box, a null value indicating that none of the WCW is covered and a value greater or equal to one indicating that the full prescribed workspace is covered.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Jianyou Han ◽  
Guangzhen Cui

This paper presents a solution region synthesis methodology to perform the dimensional synthesis of spatial 5-spherical–spherical (SS) linkages for six specified positions of the end-effector. Dimensional synthesis equations for an SS link are formulated. After solving the synthesis equations, the curves of moving and fixed joints can be obtained, and they are called moving and fixed solution curves, respectively. Each point on the curves represents an SS link. Considering the limited range of joints at the first position, we can obtain the feasible solution curves. The link length curves can be obtained based on the feasible solution curves. We determine three SS links by selecting three points meeting the requirements on link length curves. Then, the solution region is built by sorting and adding feasible solution curves and projecting the feasible solution curves on the line. The feasible solution region can be obtained by eliminating defective linkages and linkages that fail to meet the other requirements from the solution region. The validity of the formulas and applicability of the proposed approach is illustrated by example.


Author(s):  
Gim Song Soh ◽  
Fangtian Ying

This paper details the dimensional synthesis for the rigid body guidance of planar eight-bar linkages that could be driven by a prismatic joint at its base. We show how two RR cranks can be added to a planar parallel robot formed by a PRR and 3R serial chain to guide its end-effector through a set of five task poses. This procedure is useful for designers who require the choice of ground pivot locations. The results are eight different types of one-degree of freedom planar eight-bar linkages. We demonstrate the design process with the design of a multifunctional wheelchair that could transform its structure between a self-propelled wheelchair and a walking guide.


2005 ◽  
Vol 127 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Xichun Nie ◽  
Venkat Krovi

Single degree-of-freedom coupled serial chain (SDCSC) mechanisms are a class of mechanisms that can be realized by coupling successive joint rotations of a serial chain linkage, by way of gears or cable-pulley drives. Such mechanisms combine the benefits of single degree-of-freedom design and control with the anthropomorphic workspace of serial chains. Our interest is in creating articulated manipulation-assistive aids based on the SDCSC configuration to work passively in cooperation with the human operator or to serve as a low-cost automation solution. However, as single-degree-of-freedom systems, such SDCSC-configuration manipulators need to be designed specific to a given task. In this paper, we investigate the development of a synthesis scheme, leveraging tools from Fourier analysis and optimization, to permit the end-effectors of such manipulators to closely approximate desired closed planar paths. In particular, we note that the forward kinematics equations take the form of a finite trigonometric series in terms of the input crank rotations. The proposed Fourier-based synthesis method exploits this special structure to achieve the combined number and dimensional synthesis of SDCSC-configuration manipulators for closed-loop planar path-following tasks. Representative examples illustrate the application of this method for tracing candidate square and rectangular paths. Emphasis is also placed on conversion of computational results into physically realizable mechanism designs.


2019 ◽  
Vol 63 (3) ◽  
pp. 472-487 ◽  
Author(s):  
ZiQiang Zhang ◽  
Qi Yang ◽  
Jing Zhao ◽  
Bin Chang ◽  
XingKun Liu

Author(s):  
Jianyou Han ◽  
Tong Yang

This paper addresses the synthesis problem of Watt-I and Stephenson-IIIa six-bar linkages motion generation for four specified task positions. Both of them have one thing in common — theirs floating links which used as end-effectors are connected to a coupler plane of a four-bar linkage. Once the task positions of end-effector are given, we can calculate the corresponding positions of the coupler plane. Then our focus is on the synthesis of a four bar-linkage and the way that a RR chain can be attached to constrain the links of this four-bar linkage. This synthesis problem of four-bar linkage motion generation can be settled by a solution region method. And then we can present an equation of pivot curve that each point on this curve can generate a satisfactory RR chain. A new local solution region that is more practicable is presented by the last numerical example.


2002 ◽  
Vol 124 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Venkat Krovi ◽  
G. K. Ananthasuresh ◽  
Vijay Kumar

Single Degree-of-freedom Coupled Serial Chain (SDCSC) mechanisms form a novel class of modular and compact mechanisms with a single degree-of-freedom, suitable for a number of manipulation tasks. Such SDCSC mechanisms take advantage of the hardware constraints between the articulations of a serial-chain linkage, created using gear-trains or belt/pulley drives, to guide the end-effector motions and forces. In this paper, we examine the dimensional synthesis of such SDCSC mechanisms to perform desired planar manipulation tasks, taking into account task specifications on both end-effector motions and forces. Our solution approach combines precision point synthesis with optimization to realize optimal mechanisms, which satisfy the design specifications exactly at the selected precision points and approximate them in the least-squares sense elsewhere along a specified trajectory. The designed mechanisms can guide a rigid body through several positions while supporting arbitrarily specified external loads. Furthermore, torsional springs are added at the joints to reduce the overall actuation requirements and to enhance the task performance. Examples from the kinematic and the kinetostatic synthesis of planar SDCSC mechanisms are presented to highlight the benefits.


Author(s):  
Jianyou Han ◽  
Wupeng Liu

In this paper, the solution region synthesis method for multi-precision-point path synthesis of planar four-bar mechanisms is presented. The solution region method is to represent an infinite number of mechanism solutions in a plane, in which the x-coordinate and the y-coordinate of the plane are both taken as the concerned parameters of the mechanisms. Then the feature curves of the mechanisms can be expressed in the plane. Firstly, the synthesis equations for the multi-precision-point path synthesis of planar four-bar mechanisms are established. Then according to the proposed defect judgment method, the defective solutions are eliminated, and an infinite number of solutions without defects are obtained. After considering and imposing design requirements, the linkages of different types and different curve types are represented in the solution region. Finally, Taking the path generation of eight points as the example, the methodology of establishing the solution region and the feasible solution region are presented, and the synthesis results are illustrated.


Author(s):  
Pablo Delgado ◽  
Thisath Attampola Arachchige Don ◽  
Jesus Gomez ◽  
Virgil Miranda ◽  
Yimesker Yihun

Abstract In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehablitation task/movement is presented. The exoskeleton provides an option to replace traditional jointbased exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Zefang Shen ◽  
Garry Allison ◽  
Lei Cui

Exoskeletons can assist wearers to relearn natural movements when attached to the human body. However, most current devices are bulky and heavy, which limit their application. In this paper, we integrated type and dimensional synthesis to design one degree-of-freedom (DOF) linkages consisting of only revolute joints with multiple output joints for compact exoskeletons. Type synthesis starts from a four-bar linkage where the output link generates the first angular output. Then, an RRR dyad is connected to the four-bar linkage for the second angular output while ensuring that the overall DOF of the new mechanism is 1. A third output joint is added in a similar manner. During each step, dimensional synthesis is formulated as a constrained optimization problem and solved via genetic algorithms. In the first case study, we developed a finger exoskeleton based on a 10-bar-13-joint linkage for a natural curling motion. The second case study presents a leg exoskeleton based on an 8-bar-10-joint linkage to reproduce a natural walking gait at the hip and knee joints. We manufactured the exoskeletons to validate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document