Reconfigurable 3-PRS Parallel Solar Tracking Stand

Author(s):  
Zhongxing Yang ◽  
Dan Zhang

The solar tracking stand adjusts its pose timely to have the solar panel properly face to the moving sun. A 3-PRS parallel manipulator is designed that provides high stiffness and easy maintenance. The reconfiguration of the 3-PRS parallel stand allows further optimization of workspace and stiffness with respect to seasons. The research discusses an optimized design for green energy collection.

Author(s):  
A Imthiyas ◽  
S. Prakash ◽  
N Vijay ◽  
A Alwin Abraham ◽  
B Ganesh Kumar

Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


2018 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Philippe Dondon ◽  
Pascal Gauterie ◽  
Renaud Charlet

Nowadays power generation is one of the greatest challenges of humanity in the framework of Sustainable Development. For example, as it is globally accepted sun tracking systems allows improvement of solar panel power ratio. In order to illustrate this concept, this paper presents the design and a behaviour modelling of a two axis small scale system for future didactical applications. The principle of tracking is described. Mathematical description is done and a mixed SPICE modelling of the system, including geometrical, optical, electronic linear and non-linear aspects is built. Simulations results are analysed. Practical mechanical and electronic designs are detailed, before conclusion. This small scale solar tracking system is now installed in a eco-friendly small scale house model.


Sign in / Sign up

Export Citation Format

Share Document