Solar Tracking Using Linear Actuator

Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.

2013 ◽  
Vol 724-725 ◽  
pp. 43-51 ◽  
Author(s):  
Yu En Wu ◽  
Kuo Chan Huang

This paper presents a smart dual-axis solar tracking system, its architecture includes sensors, embedded controllers, AC motors, Integrated electric putter design biaxial institutions, and the GSM automatic report of fault notification, to achieve autonomous tracking solar track system and adjust the solar panels to reach the maximum smooth by tracking the solar azimuth angle and elevation angle, and ensure that the solar panels with the sun to maintain the vertical in any time and any place, thus achieving the best power efficiency. This system proposed a dual-axis design, and an embedded controller used as the main system controller to detect voltage difference and determine the solar azimuth angle with four groups of CDS as a sensing element. To lock the sun, the solar panels be perpendicular via the moving of AC motor (EW) and motorized faders (north-south). The control system software using C language can be extremely fast and accurate tracking of the solar angle, and dual-axis operation with recovery mode to save the power loss. Finally, we have the actual analysis and verification of benefit of power generation in this paper, from this experimental results, we can verify the integration of build dual-axis solar tracking system and solar power system have promoted 30% generating power capacity more than fixed solar power system and has low failure rate. It can improve the problem of traditional tracking system reliability and greatly enhance the usefulness of this system.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Author(s):  
Nur Farahida Mohd Shamsuddin Tan ◽  
◽  
Muhammad Heidzer Zainal Abidin ◽  
Lukman Iqbal Hussein ◽  
Mohd Hezri Mokhtar ◽  
...  

The project is to design an active solar tracking system which able to track the sunlight with the aid of light dependent resistor (LDR) as input sensor to read the intensity of sunlight. The solar tracking system uses platform as a base and it is moved by a servo motor as the platform needs to be moved towards the sunlight to get the optimum light. The solar tracking system is programmed by using microcontroller Arduino Uno as a main controller. After the setup of the hardware and program, the tracking motion of the tracking system has been implemented to track the sun based on sunlight direction. In this work, it is designed that the motion of the tracking system is depends on the value read by LDR. As a conclusion, the solar tracking system can increase the solar panels efficiency by keeping the solar panels perpendicular with sun’s position.


Author(s):  
Liping Guo

Solar energy conversion is one of the most addressed topics in the field of renewable energy. Solar radiation is usually converted into two forms of energy: thermal and electrical energy. Solar electricity has applications in many systems such as rural electricity, water pumping, and satellite communications. A solar power system consists of solar panels, dc-dc converters, controller, and load. Charging a rechargeable battery requires a regulated dc voltage. However, the voltage supplied by a solar panel can vary significantly depending upon the day, time, weather condition, and irradiation from the sun. Since solar power is unregulated, it cannot be supplied to the load directly. Solar power is harvested and stored by charging rechargeable batteries. A dc-dc converter is connected between the solar panel and the battery to charge the battery with a regulated voltage. Therefore, solar power can be properly converted and controlled to provide required electrical power to the load, and excessive power can be sent back to the electrical grid.


2013 ◽  
Vol 422 ◽  
pp. 118-122 ◽  
Author(s):  
Song Hao Wang ◽  
Chih Sheng ◽  
Huann Ming Chou ◽  
Edgar J. Tobias Corado

A concept of solar chimney utilizing solar panels for building passive ventilation is proposed in this paper. First, CFD Numerical analyses were conducted to test the feasibility. Major dimensional parameters were considered in the simulation and meaningful air flow rates were observed under normal conditions. Experiments were conducted to confirm the concept and to understand the physical mechanism of the phenomenon by air buoyancy. Based on the results of the study, the proposed solar panel chimney and its advantages are worth of further investigation. Based on this innovative concept, the rooftop solar panel could be re-arranged, grouped and boxed to form an effective solar panel chimney, to serve as passive ventilation system without much cost and fully utilize the solar power.


Author(s):  
Prof. Shashank Pujari ◽  
Prangyadarshini Behera ◽  
Devendrakumar Yadav

The paper outlines an application of smart solar “photovoltaic” power generation. Solar panels are typically in fixed position. They're limited in their energy-generating ability because they cannot consistently take full advantage of maximum sunlight. For more effective solar energy system, the solar panel should be able to align with sunlight as it changes during a given day. The present paper examines the design advantages of creating an intelligent solar tracking system like a helianthus flower using microcontroller based embedded system.


JOURNAL ASRO ◽  
2020 ◽  
Vol 11 (04) ◽  
pp. 19
Author(s):  
Sutrisno Sutrisno ◽  
As'ad Aris Mustofa ◽  
Wawan Kusdiana ◽  
Okol Sri Suharyo

Indonesia is a country traversed by the equator therefore get a high intensity of sunlight from morning to afternoon, it can be utilized by utilizing solar power to be converted into electrical energy, that is using solar panels. The performance of solar panels is strongly influenced by the intensity of sunlight. Therefore it is Necessary to design a tool in the form of solar tracker that can move the solar panels to the position of the solar panels can always follow the direction of the coming sun. Currently there is already doing research with solar tracker but limited to move only east and west course, this will be more optimal if solar tracker can follow sunshine from all direction. In this research we managed to modify the models of a solar tracker that can move in direction east, west, north and south following the sun.The conclusion of this research is Obtained with the use of solar tracking system 2 degrees of freedom can reach a power increase of 11% Compared to the solar tracking system 1 degree of freedom.   Keywords: Solar tracker 2 degrees of freedom, Solar cell.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
I Gusti Lanang Yoga Rafsandita ◽  
Gede Widayana ◽  
I Wayan Sutaya

Indonesia merupakan negara yang memiliki berbagai jenis sumber daya energi dalam jumlah yang cukup melimpah. Wilayah Indonesia akan selalu disinari matahari selama 10 - 12 jam dalam sehari. Data Dirjen Listrik dan Pengembangan Energi pada tahun 1997, kapasitas terpasang listrik tenaga surya di Indonesia mencapai 0,88 MW dari potensi yang tersedia 1,2 x 109 MW. Kebanyakan panel surya dipasang permanen dengan sudut elevasi yang tetap (fixed elevating angles). Hal ini menyebabkan panel surya tersebut tidak dapat menyerap radiasi matahari secara optimal. Penyerapan radiasi matahari akan optimal jika arah radiasi matahari tegak lurus terhadap permukaan bidang panel surya. Penulis tertarik untuk merancang dan membuat alat yang dapat dipergunakan untuk menempelkan panel sel surya tetap dalam kondisi intensitas matahari yang maksimum. Dalam hal ini, menggunakan satu sumbu. dengan telah dibuatnya alat penggerak mekanik satu sumbu pada solar panel ini, penulis dapat memberikan gambaran tentang pembangkit listrik tenaga surya kepada masyarakat. Selain itu dengan adanya penggerak mekanik pada solar panel ini, solar panel bisa lebih besar menghasilkan tegangan pada baterai daripada solar panel tanpa penggerak. Dan dari percobaan menggunakan penggerak mekanik satu sumbu ini menghasilkan tegangan di pukul 08.00 pada baterai nominal sebesar 2,04V hari pertama, 2,05V hari kedua dan 2,03V hari ketiga dan di akhir perhitungan pukul 16.00 tegangan pada baterai menujukan nominal sebesar 11,18V hari pertama, 11,27V hari kedua dan 11,3V hari ketiga.Kata Kunci : Solar Panel, Tipe BCT30-12, Penggerak Satu Sumbu Indonesia is a country that has different kinds of energy resources in sufficient quantities abundant. then Indonesia will be always exposed to the sun for 10-12 hours a day. Data Director General of Electricity and Energy Development in 1997, the installed capacity of solar power in Indonesia reached 0.88 MW of the available potential of 1.2 x 109 MW. Most solar panels are installed permanently at a fixed elevation angle (fixed elevating angles). This causes the solar panels can not absorb solar radiation optimally. Absorption of solar radiation would be optimal if the solar radiation direction perpendicular to the surface of solar panel field. Writers interested in designing and creating tools that can be used to attach the solar panels remain in a state of maximum intensity of the sun. In this case, using a single axis. to have made a mechanical actuator on the solar panel one axis, the author can give an idea of solar power plants to the public. In addition to the mechanical drive on the solar panels, the solar panels generate voltage can be larger than the solar panel to the battery without driving. And from experiments using mechanical drive one axis produces a voltage at 08.00 at a total nominal battery 2,04V first day, 2,05V 2,03V second day and third day and at the end of the calculation 16.00 nominal voltage of the battery addressed by 11,18V the first day, 11,27V 11,3V second day and third day.keyword : Solar Panel, Type BCT30-12, Activator One Wick


2018 ◽  
Vol 7 (2) ◽  
pp. 913
Author(s):  
Muhammed Sabri Salim

During the daily sun cycle, the falling rays are of varying intensity on the solar panel reducing the energy generated from it. This is evident in the energy production of solar panels that are installed on the slanted surfaces of homes scattered in the rain regions of the world. In this research, the reasons for the low efficiency of energy production of solar panels that are installed on the A-frame designs of homes were studied and solved. The design of an integrated tracking system is developed based on fuzzy logic control using an open source code that can be easily modified. The performance and characteristics of the solar tracking device are tested experimentally to test its suitability for use with slanted roofs homes. The integrated solar localization system offers economical and efficient solar monitoring, as well as open source programming, which allows for future improvements and changes. In addition, the single-axis fuzzy tracking system was good for moving both panels in less than five seconds towards the sun. The adoption of the proposed design provides an extremely accurate tracking system and therefore, maximizes the potential of power generated by the solar panel since it will meet the sun's rays from dawn to dusk. The economic effect of the proposed design is to approximately double the value of electrical power received compared to the fixed design.  


Author(s):  
Iwan Arissetyadhi ◽  
Tresna Dewi ◽  
RD Kusumanto

Indonesia has a high potential for renewable energy, especially solar power, due to its location in the equator and blessed with an abundance of sunlight. However, the energy potential from the sun is not maximally utilized. One of the efforts to increase the generated electricity and efficiency is by applied the panels in arches setting. This setting is made possible by the availability of the semi-flexible monocrystalline solar panel. This paper investigates the increment of harvested power and efficiency by arranging the solar panel in concave, convex, and plane settings. The data were taken in August 2019, where Palembang experiences the dry season and January 2020 during the rainy season. The highest power produced (20.27 Watt) and efficiency (13.14%) were achieved in a concave setting during the dry season. The convex setting produced more power and efficiency (13.26 Watt and 9.30%) compared to the plane setting (10.24 Watt and 9.71%). These results show that arches setting are more efficient to harvest solar power and give more extensive applications such as to power a dynamics mobile robot applied in agriculture.


Sign in / Sign up

Export Citation Format

Share Document