Computational Evaluation of the Haemodynamic Performance of a Novel Prosthetic Heart Valve

Author(s):  
Mrudang Mathur ◽  
Ankit Saxena ◽  
Rohan Shad ◽  
Anwesha Chattoraj

It has become evident through studies both computational and otherwise, that the characteristics of blood flow through a mechanical heart valve is closely tied to its thrombogenic profile and clinical performance. Despite progress in the field, there remains an unmet clinical need for a heart valve that is both durable and free from the need for anticoagulation therapy. We designed a prototype for a novel mechanical heart valve with the aim of improving hemodynamic performance and obviating the need for anticoagulant therapy. In this paper we present the results of a computational study that compared our prototype mechanical heart valve with a popular commercially available valve, the Medtronic ATS valve. Our results show that the unique design features of our prototype leads to a reduction turbulent flow, along with a reduction in velocity jets by up to 28%, pressure gradient across the valve by 36.7%, and increases in the effective orifice area of the valve by 25.7%.

Author(s):  
Olga Pierrakos ◽  
Pavlos P. Vlachos ◽  
Demetri P. Telionis ◽  
Saami Yazdani ◽  
Ali Etebari

Recent groundbreaking work by Kilner et al. [1] demonstrated that a healthy functioning heart redirects the flow through the left ventricle (LV) in an asymmetric manner, which results in an energy conserving mechanism. Heart valve replacement alters the physiological operation of the heart significantly affecting its hemodynamic performance. As a result, orientation and valve design could play a significant role in the energy efficient operation of the heart; therefore, orienting MHVs so that flow disturbances are minimized enhances the hemodynamic performance of the LV.


Author(s):  
B. Min Yun ◽  
Lakshmi P. Dasi ◽  
Cyrus K. Aidun ◽  
Ajit P. Yoganathan

Prosthetic heart valves have been used for over 50 years to replace diseased native valves but still lead to severe complications such as platelet aggregation and thromboembolic events. The most widely implanted design is the bileaflet mechanical heart valve (BMHV). Most modern BMHV designs have better flow hemodynamics and blood damage performance than earlier-generation counterparts. However, blood element trauma and thromboembolic events still remain as major complications of current BMHV designs. These problems have been linked to blood damage caused by non-physiological stresses. These stresses are caused by the complex flow fields that arise due to prosthetic heart valve design. In order to reduce the severity of these complications, the blood damage that occurs in flows through prosthetic heart valves must be well understood.


2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Wei Sun ◽  
Milton DeHerrera

For more than 40years, the replacement of diseased natural heart valves with prosthetic devices has dramatically improved the quality and length of the lives of millions of patients. Bioprosthetic heart valves (BHV), which are composed of biologically derived tissues, have good hemodynamic performance and do not require the anticoagulation therapy necessary when mechanical heart valves are implanted. However, these bioprostheses continue to fail due to structural failure resulting from poor tissue durability and faulty design. AHA∕ACC guideline recommends use of BHV for patients 65years or older, primarily due to its current 10–15years of limited durability. Clearly, an in-depth understanding of the biomechanical behavior of BHV is essential to improving BHV design to reduce rates of failure and increase its durability. Objective: develop a robust computational model to simulate BHV deformations and optimize its design. Methods: Experimentally driven, nonlinear, anisotropic material models are used for modeling the mechanical properties of valve leaflets; A novel method of constructing parametric finite element models is used to rapidly generate 3D free-from geometries of BHV for valve design optimization; Valve design parameters, such as peak stresses and effective orifice area (EOA) are evaluated. Results: multiple applications of the approach demonstrate the feasibility of utilizing computational biomechanics in BHV design. The computational approach provides us with an efficient new platform to develop and optimize the next generation heart valve design such as transcatheter valve and valve repair device design.


Author(s):  
B. Min Yun ◽  
Jingshu Wu ◽  
Cyrus K. Aidun ◽  
Ajit P. Yoganathan

Prosthetic heart valves have been used for over 50 years to replace diseased native valves but still lead to severe complications such as hemolysis, platelet aggregation, and thromboembolic events. The most widely implanted design is the bileaflet mechanical heart valve (BMHV). Most modern BMHV designs have better flow hemodynamics and blood damage performance than their earlier-generation counterparts. However, blood element trauma and thromboembolic events still remain as major complications of current BMHV designs. These problems have been linked to blood element damage caused by non-physiological stresses. These stresses are caused by the complex flow fields that arise due to prosthetic heart valve design, particularly in the leaflet hinge region. In order to reduce the severity of these complications, the blood damage that occurs in flows through prosthetic heart valves must be well understood.


Author(s):  
K. Yu. Klyshnikov ◽  
E. A. Ovcharenko ◽  
A. N. Stasev ◽  
T. V. Glushkova ◽  
Yu. A. Kudryavtseva ◽  
...  

The aim of the study was to perform a series of in vitro tests of a prototype of the developing heart valve prosthesis to evaluate its functional characteristics. Materials and methods. In this work we have used the frames and full prototypes of the prosthesis, consisting of a stent-like stainless steel support frame with mounted biological leaflets and cover. The authors evaluated the calculated and experimental forces necessary for the displacement of the sutureless implanted prosthesis using the test machine under uniaxial tension. The risk of defects and damages to the supporting framework as a result of implantation was evaluated by scanning electron microscopy. The hydrodynamic characteristics of the prosthesis were investigated under physiological conditions and «valvein-valve» implantation. Evaluation of the ergonomics and applicability of the proposed construction on the cadaver heart model of cattle was carried out. Results. As a result of the forces assessment, it was found that the force required to shear the prosthesis was 3.12 ± 0.37 N, while the calculated value was 1.7 N, which is significantly lower than the obtained value. The comparison of the images obtained with small and large magnifications demonstrated the absence of critical surface defects. Additional analysis under the super-large magnifications also did not reveal problem areas. During the hydrodynamic study, it was shown that the average transplant gradient increased slightly from 2.8–3.4 to 3.2–4.5 mm Hg for the initial prosthesis and the «valve-in-valve» complex, respectively. The decrease of the effective orifice area was 6–9% relative to the initial one. Evaluation of the implantation technique demonstrated the consistency of the approach: the use of the developed holder in combination with the balloon implantation system made it possible to position the prosthesis throughout the procedure. Conclusion. The series of tests demonstrates the consistency of the developed design, intended for the replacement of a failed prosthetic valve of the heart with the «valve-in-valve» implantation.


2018 ◽  
Vol 5 (3) ◽  
pp. 74 ◽  
Author(s):  
Fardin Khalili ◽  
Peshala Gamage ◽  
Richard Sandler ◽  
Hansen Mansy

Artificial heart valves may dysfunction, leading to thrombus and/or pannus formations. Computational fluid dynamics is a promising tool for improved understanding of heart valve hemodynamics that quantify detailed flow velocities and turbulent stresses to complement Doppler measurements. This combined information can assist in choosing optimal prosthesis for individual patients, aiding in the development of improved valve designs, and illuminating subtle changes to help guide more timely early intervention of valve dysfunction. In this computational study, flow characteristics around a bileaflet mechanical heart valve were investigated. The study focused on the hemodynamic effects of leaflet immobility, specifically, where one leaflet does not fully open. Results showed that leaflet immobility increased the principal turbulent stresses (up to 400%), and increased forces and moments on both leaflets (up to 600% and 4000%, respectively). These unfavorable conditions elevate the risk of blood cell damage and platelet activation, which are known to cascade to more severe leaflet dysfunction. Leaflet immobility appeared to cause maximal velocity within the lateral orifices. This points to the possible importance of measuring maximal velocity at the lateral orifices by Doppler ultrasound (in addition to the central orifice, which is current practice) to determine accurate pressure gradients as markers of valve dysfunction.


2020 ◽  
Vol 7 (3) ◽  
pp. 90
Author(s):  
Othman Smadi ◽  
Anas Abdelkarim ◽  
Samer Awad ◽  
Thakir D. Almomani

The prosthetic heart valve is vulnerable to dysfunction after surgery, thus a frequent assessment is required. Doppler electrocardiography and its quantitative parameters are commonly used to assess the performance of the prosthetic heart valves and provide detailed information on the interaction between the heart chambers and related prosthetic valves, allowing early detection of complications. However, in the case of the presence of subaortic stenosis, the accuracy of Doppler has not been fully investigated in previous studies and guidelines. Therefore, it is important to evaluate the accuracy of the parameters in such cases to get early detection, and a proper treatment plan for the patient, at the right time. In the current study, a CFD simulation was performed for the blood flow through a Bileaflet Mechanical Heart Valve (BMHV) with concomitant obstruction in the Left Ventricle Outflow Tract (LVOT). The current study explores the impact of the presence of the subaortic on flow patterns. It also investigates the accuracy of (BMHV) evaluation using Doppler parameters, as proposed in the American Society of Echocardiography (ASE) guidelines.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
B. Min Yun ◽  
Cyrus K. Aidun ◽  
Ajit P. Yoganathan

Bileaflet mechanical heart valves (BMHVs) are among the most popular prostheses to replace defective native valves. However, complex flow phenomena caused by the prosthesis are thought to induce serious thromboembolic complications. This study aims at employing a novel multiscale numerical method that models realistic sized suspended platelets for assessing blood damage potential in flow through BMHVs. A previously validated lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through a 23 mm St. Jude Medical (SJM) Regent™ valve in the aortic position at very high spatiotemporal resolution with the presence of thousands of suspended platelets. Platelet damage is modeled for both the systolic and diastolic phases of the cardiac cycle. No platelets exceed activation thresholds for any of the simulations. Platelet damage is determined to be particularly high for suspended elements trapped in recirculation zones, which suggests a shift of focus in blood damage studies away from instantaneous flow fields and toward high flow mixing regions. In the diastolic phase, leakage flow through the b-datum gap is shown to cause highest damage to platelets. This multiscale numerical method may be used as a generic solver for evaluating blood damage in other cardiovascular flows and devices.


Author(s):  
P. Oshkai ◽  
F. Haji-Esmaeili

Digital particle image velocimetry is employed to study turbulent flow through a bileaflet mechanical heart valve during systolic phase of a cardiac cycle. Unsteady vortex shedding from the valve’s leaflets displays distinct characteristic frequencies, depending on the opening angle of each leaflet. Small- and large-scale transverse oscillations of the separated shear layers are studied using global quantitative flow imaging approach. Turbulent flow structures including jet-like regions and shed vortices are characterized in terms of patterns of instantaneous and time-averaged velocity, vorticity, and turbulence statistics.


Sign in / Sign up

Export Citation Format

Share Document