Study on the Model of a Single-Point Diamond Fly Cutting Machine Tool at Different Rotational Speed Based on Transfer Matrix Method for Multibody Systems

Author(s):  
Yu Chang ◽  
Jianguo Ding ◽  
Hui Zhuang ◽  
Peng Chen ◽  
Wei Wei ◽  
...  

Natural vibration characteristics are important factors affecting the processing quality for an ultra-precision machine tool. The rapid and accurate calculation method for solving natural vibration characteristics has a significance in machine tool dynamics design. By applying the transfer matrix method for multibody systems (MSTMM), the dynamics model of a single-point diamond fly cutting machine tool is established and the rapid computation of natural vibration characteristics at different rotational speed is completed. The results calculated by MSTMM is compared with those by finite element software ABAQUS, the error between the first ten frequencies calculated by MSTMM and ABAQUS is less than 5.68%. However, as the rotational speed increases, the first eight frequencies and mode shapes have no obvious change, while the 9th and 10th modal change significantly. The mode shapes of 9th and 10th orders are vacillation of the spindle. The results show that the rotation of aerostatic spindle has significant effect on the spindle system and little effect on the other parts.

Author(s):  
Yuanyuan Ding ◽  
Xiaoting Rui ◽  
Gangli Chen ◽  
Xingbao Liu ◽  
Xiaoyun Zeng

Natural vibration characteristics play a very important role in the evaluation of the dynamics characteristics and the machined surface of a single-point diamond fly cutting machine tool (SDFCMT). In this paper, the natural vibration characteristics are studied from aspects of theory, computation, and experiment. By adopting the transfer matrix method for multibody systems (MSTMM), the dynamics model and its topology figure are established, and its natural vibration characteristics are computed. The computation results are verified by a modal test.


2015 ◽  
Vol 83 (3) ◽  
Author(s):  
Gangli Chen ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Jianshu Zhang

Due to the mass consumption and engine thrust of a flexible missile during the powered phase flight, its natural vibration characteristics may be changed significantly. The calculation of natural frequencies and mode shapes plays an important role in the structural design of the missile. Aiming at calculating the natural vibration characteristics of the missile rapidly and accurately, a nonuniform beam subjected to an engine thrust is used to model the free vibration of the missile and Riccati transfer matrix method (RTMM) is adopted in this paper. Numerical results show that the natural frequencies of a typical single stage flexible missile are increased unceasingly in its powered phase, and its mode shapes are changed a lot. When the presented methodology is used to study the natural vibration characteristics of flexible missiles, not only the mass, stiffness, and axial compressive force distributions are described realistically but also numerical stability, high computation speed, and accuracy are achieved.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Laith K. Abbas ◽  
Li Min-Jiao ◽  
Rui Xiao-Ting

The feasibility of using the transfer matrix method (TMM) to compute the natural vibration characteristics of a flexible rocket/satellite launch vehicle is explored theoretically. In the approach to the problem, a nonuniform free-free Timoshenko and Euler-Bernoulli beamlike structure is modeled. A provision is made to take into consideration the effects of shear deformation and rotary inertia. Large thrust-to-weight ratio leads to large axial accelerations that result in an axial inertia load distribution from nose to tail which causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. Once the transfer matrix of a single component has been obtained, the product of all component matrices composes the matrix of the entire structure. The frequency equation and mode shape are formulated in terms of the elements of the structural matrices. Flight test and analytical results validate the present TMM formulas.


2019 ◽  
Vol 9 (15) ◽  
pp. 3168
Author(s):  
Bingbing San ◽  
Yunlong Ma ◽  
Zhi Xiao ◽  
Dongming Feng ◽  
Liwei Yin

This work investigates the natural vibration characteristics of free-form shells when considering the influence of uncertainties, including initial geometric imperfection, shell thickness deviation, and elastic modulus deviation. Herein, free-form shell models are generated while using a self-coded optimization algorithm. The Latin hypercube sampling (LHS) method is used to draw the samplings of uncertainties with respect to their stochastic probability models. ANSYS finite element (FE) software is adopted to analyze the natural vibration characteristics and compute the natural frequencies. The mean values, standard deviations, and cumulative distributions functions (CDFs) of the first three natural frequencies are obtained. The partial correlation coefficient is adopted to rank the significances of uncertainty factors. The study reveals that, for the free-form shells that were investigated in this study, the natural frequencies is a random quantity with a normal distribution; elastic modulus deviation imposes the greatest effect on natural frequencies; shell thickness ranks the second; geometrical imperfection ranks the last, with a much lower weight than the other two factors, which illustrates that the shape of the studied free-form shells is robust in term of natural vibration characteristics; when the supported edges are fixed during the shape optimization, the stochastic characteristics do not significantly change during the shape optimization process.


Author(s):  
Takeshi Tokunaga ◽  
Koji Mori ◽  
Hiroko Kadowaki ◽  
Takashi Saito

Abstract A gradient of a blood flow velocity on the surface of a blood vessel is one of the clinical medicine concerns from the view point of prevention of the arteriosclerosis. In previous study, we formulated a relationship between the pressure and a flow velocity based on the coupled wave theory of elastic pipes and Newtonian fluids [1]. In addition, a flow velocity distribution and a wall shear stress are estimated by using the blood pressure data, which are non-invasively obtained by the tonometry method. This method is quasi-analytical method to apply the coupled wave theory for industrial flow field inside steel pipes proposed by Urata [4] to blood vessel, and has the advantage of systematic estimator compared with the numerical calculation. However, the coupled wave theory has applied to the elastic pipes that were assumed to be infinitely long. In addition, a single wave was assumed to be dominant within the elastic pipes and the Newtonian fluids. Therefore, in order to apply various length vessels in clinical field, the boundary of the blood vessels that varies from site to site, and the natural vibration characteristics that depend on the boundary conditions, could not be reflected in the wall shear stress estimation. In general, in order to solve the forced vibration with the boundary condition, it is necessary to clarify natural frequency and natural mode as natural vibration characteristics of structure. In this study, we introduce the spring supported elastic pipes to the coupled wave theory and formulated a relationship between the natural vibration characteristics and the boundary conditions. In this proposed method, the spring-supported elastic pipe has a feature that can be treated as an arbitrary boundary condition of an artery by giving an appropriate spring coefficients. Therefore, it is easy to apply to various types of blood vessels clinically. By investigating the natural vibration characteristics of blood vessels that varies from site to site, it may be possible to clarify fluctuations of blood flow in response to blood pressure with some frequency-bands. In addition, natural angular frequencies and natural modes of the spring supported elastic pipes and the Newtonian fluids were estimated for general blood vessel based on the coupled wave theory. In the result, the natural angular frequencies and the natural modes that reflect the clinical vibration characteristics to some extent can be estimated. On the other hand, particular modes may not reflect boundary condition, and further examination of the relationship between natural vibration characteristics and boundary condition is needed.


2005 ◽  
Vol 21 (2) ◽  
pp. 169-184 ◽  
Author(s):  
Myung Jo Jhung ◽  
Young Hwan Choi ◽  
Hho Jung Kim ◽  
Kyeong Hoon Jeong

Sign in / Sign up

Export Citation Format

Share Document